首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An obligate intracellular parasite infecting Ectocarpus spp. and other filamentous marine brown algae is described. The pathogen forms an unwalled multinucleate syncytium (plasmodium) within the host cell cytoplasm and causes hypertrophy. Cruciform nuclear divisions occur during early development. Mature plasmodia become transformed into single sporangia, filling the host cell completely, and then cleave into several hundred spores. The spores are motile with two unequal, whiplash-type flagella inserted subapically and also show amoeboid movement. Upon settlement, cysts with chitinous walls are formed. Infection of host cells is accomplished by means of an adhesorium and a stachel apparatus penetrating the host cell wall, and injection of the cyst content into the host cell cytoplasm. The parasite is characterized by features specific for the plasmodiophorids and is described as a new genus and species, Maullinia ectocarpii.  相似文献   

2.
The development of two red algal parasites was examined in laboratory culture. The red algal parasite Bostrychiocolax australis gen. et sp. nov., from Australia, originally misidentified as Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita, completes its life history in 6 weeks on its host Bostrychia radicans (Montagne) Montagne. Initially the spores divide to form a small lenticular cell, and then a germ tube grows from the opposite pole. Upon contact with the host cuticle, the germ tube penetrates the host cell wall. The tip of the germ tube expands, and the spore cytoplasm moves into this expanded tip. The expanded germ tube tip becomes the first endophytic cell from which a parasite cell is cut off that fuses with a host tier cell. The nuclei of this infected host cell enlarge. As parasite development continues, other host-parasite cell fusions are formed, transferring more parasite nuclei into host cells. The erumpent colorless multicellular parasite develops externally on the host, and reproductive structures are visible within 2 weeks. Tetrasporangia are superficial and cruciately or tetra-hedrally divided. Spermatia are formed in clusters. The carpogonial branches are four-celled, and the carpogonium fuses directly with the auxiliary (support) cell. The mature carposporophyte has a large central fusion cell and sympodially branched gonimoblast filaments. Early stages of development differ markedly in Dawsoniocolax bostrychiae from Brazil. Upon contact with the host, the spore undergoes a nearly equal division, and a germ tube elongates from the more basal of the two spore cells, penetrates the host cell wall, and fuses with a host tier cell. Subsequent development involves enlargement of the original spore body and division to form a multicellular cushion, from which descending rhizoidal filaments form that fuse with underlying host cells. This radically different development is in marked contrast to the final reproductive morphology, which is similar to B. australis and has lead to taxonomic confusion between these two entities. The different spore germination patterns and early germ-ling development of B. australis and D. bostrychiae warrant the formation of a new genus for the Australian parasite.  相似文献   

3.
The fine structure of the intercellular hyphae of the obligate parasite Albugo candida infecting radish does not differ markedly from that described previously for cells of Peronospora manshurica. The stalked, capitate haustoria do not contain nuclei and are packed with mitochondria and lomasomes. The fungal plasma membrane and cell wall are continuous from the intercellular hypha throughout the haustorium except that there is no evidence of fungal cell wall around a portion of the haustorial stalk proximal to the haustorial head. Within the vacuolate host mesophyll cell, the haustorium is always surrounded by host plasma membrane and with at least a thin layer of host cytoplasm. The host cell wall invaginates at the point of haustorial penetration to form a short sheath around the region of penetration, but normally there is no host cell wall around the balance of the haustorium. About 1% of the haustoria observed were necrotic, and these were invariably walled-off completely from host cytoplasm by host cell wall. An amorphous, moderately electron-dense encapsulation lies between the haustorium proper and the host plasma membrane and extends into the penetration region between the sheath and the fungal cell wall. Invaded host cells contain more ribosomal-rich ground cytoplasm than uninfected cells. Glandular-like systems of tubules and connecting vesicles are often numerous in host cytoplasm in the vicinity of haustorial heads. These tubules open into the encapsulation, their limiting unit membranes being continuous with the host plasma membrane. We suggest that these represent a secretory mechanism of the host specifically induced by the parasite.  相似文献   

4.
Summary Pit connections (PCs) develop between the parasitic red algaHolmsella and its hostGracilaria. Only parasite cells initiate the formation of host-parasite pit connections. The parasite produces a small connecting cell (termed the conjunctor cell) which moves through the cell wall to fuse with either an adjacent host or parasite cell. The parasite secondary PC, which forms between the conjunctor cell and the parasite cell, is structurally different from a parasite primary PC, and has the distinct structure of a host-parasite PC. Only if the conjunctor cell fuses with another parasite cell will the former parasite-conjunctor cell PC be altered to a typical parasite-parasite PC. If the conjunctor cell fuses with an adjacent host cell the PC continues to develop as host-parasite. Occasionally a conjunctor cell fails to fuse with an adjacent cell (whether host or parasite), and the conjunctor cell and PC eventually breakdown in the cell wall. The parasite overcomes several barriers in order to infect the host, including the formation of host-parasite PCs which appear to be a necessary component of the parasiticHolmsella-Gracilaria association.  相似文献   

5.
SYNOPSIS. The ultrastructure of the known tissue stages of Cryptosporidium wrairi Vetterling, Jervis, Merrill, and Sprinz, 1971 parasitizing the ileum of guinea pigs is described. Young trophozoites are surrounded by 4 unit membranes, the outer 2 of host origin, the inner 2 the pellicle of the parasite. Each trophozoite contains a vesicular nucleus with a large nucleolus. Its cytoplasm contains ribosomes, but eventually fills with cisternae of the rough endoplasmic reticulum. As the trophozoite matures the area of attachment of the parasite to the host cell becomes vacuolated, with vertical membranous folds. It is apparent that the parasite acquires nourishment from the host cell thru this area of attachment. As schizonts develop, (a) multiple nuclei appear, (b) the endoplasmic reticulum enlarges, (c) the attachment zone increases in area, (d) large vacuoles, which develop as endocytotic vesicles in the attachment area, are found in the cytoplasm and (e) the inner unit membrane of the parasite pellicle is resorbed around the sides of the developing schizont. Following nuclear division, merozoites develop from the schizont by budding. Merozoites have an ultrastructure similar to that described for other coccidia except that no mitochondria, micropores, or subpellicular tubules were observed. Merozoites penetrate the epithelial cell causing invagination of the microvillar membrane and lysing it. No unit membrane is formed between the parasite and the host cell. However, the cell produces one or 2 dense bands adjacent to the parasite attachment area. The macrogamete contains a nucleus, endoplasmic reticulum, attachment zone, and large vacuoles. It also contains a variety of granules, some of which are polysaccharide. The immature microgametocyte contains multiple compact nuclei. No mature microgametocytes or zygotes were found.  相似文献   

6.
Three mitosporic fungi, i.e., Ardhachandra cristaspora, Dicyma pulvinata, and Sibirina gamsii from basidiomata of Aphyllophorales (Basidiomycetes), are described and illustrated. These fungi have not been previously reported in Japan.  相似文献   

7.
Parasitic red algae grow only on other red algae and have over 120 described species. Developmental studies in red algal parasites are few, although they have shown that secondary pit connections formed between parasite and host and proposed that this was an important process in successful parasitism. Furthermore, it was recorded that the transfer of parasite nuclei by these secondary pit connections led to different host cell effects. We used developmental studies to reconstruct early stages and any host cell effects of a parasite on Vertebrata aterrima. A mitochondrial marker (cox1) and morphological observations (light and fluorescence microscopy) were used to describe this new red algal parasite as Vertebrata aterrimophila sp. nov. Early developmental stages show that a parasite spore connects via secondary pit connections with a pericentral host cell after cuticle penetration. Developmental observations revealed a unique connection cell that grows into a ‘trunk-like’ structure. Host cell transformation after infection by the parasite included apparent increases in both carbohydrate concentrations and nuclear size, as well as structural changes. Analyses of molecular phylogenies and reproductive structures indicated that the closest relative of V. aterrimophila is its host, V. aterrima. Our study shows a novel developmental parasite stage (‘trunk-like’ cell) and highlights the need for further developmental studies to investigate the range of developmental patterns and host effects in parasitic red algae.  相似文献   

8.
Trypanosoma (Megatrypanum) freitasi, a parasite of marsupials of the genus Didelphis, has been found to undergo in the lumen of the scent (anal) glands of its vertebrate host, a cycle such as usually occurs in the intestinal tract of the insect vectors of trypanosomatids and similar to what has been reported for Trypanosoma (Schizotrypanum) cruzi. The invertebrate host of Trypanosoma freitasi is still unknown. Developmental stages of the trypanosome in its mammalian host, especially the dividing epimastigotes, multinucleate plasmodial forms and rosettes found in the lumen of the scent glands of a naturally infected Didelphis marsupialis are described and illustrated.  相似文献   

9.
Vaughn KC 《Protoplasma》2002,219(3-4):227-237
Summary.  The parasitic weed dodder (Cuscuta pentagona L.) invades a number of potential host species, but the mechanisms responsible for ensuring tight adhesion to the wide variety of host surfaces have yet to be identified. In this study, a battery of microscopy protocols is used to examine the host–parasite interface in an effort to deduce these mechanisms. As the dodder shoot approaches the host tissue, epidermal cells in the parasite shoot elongate and differentiate into secretory type trichomes. The trichome cell walls are malleable, allowing them to elongate towards the host and bend their walls to conform to the shape of the host cell surface. The presence of osmiophilic particles (probable cell-wall-loosening complexes) at far greater numbers than found in other species presages the expansion and malleable nature of the epidermal cells. In addition to the changes in cell shape, the dodder trichome cells secrete an electron-opaque cementing substance that covers the host–parasite interface. When probed with antibodies that recognize cell wall components, the cement reacted only with antibodies that recognize chiefly de-esterified pectins but not other common wall constituents. These data indicate that dodder utilizes both a cementing layer of pectin and a radically modified epidermal cell wall to secure the parasite to the perspective host. Received January 29, 2001 Accepted November 28, 2001  相似文献   

10.
11.
The determinants of host specificity, which are poorly understood in red algal parasites, were studied in the red algal parasites Bostrychiocolax australis Zuccarello et West and Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita. Culture studies were performed to determine host range, sites of host resistance, and genetics of transmission of resistance. Both species parasitize Bostrychia radicans (Montagne) Montagne, whereas Bostrychiocolax australis also parasitizes Bostrychia moritziana (Sonder ex Kützing) J. Agardh and Stictosiphonia kelanensis (Grunow ex Post) R. J. King et Puttock. Isolates of B. radicans resistant to both parasites were found worldwide, often within the same population as susceptible isolates. On resistant Bostrychia species and isolates, specificity was manifested at three stages: 1) host penetration, in which the spore germ peg failed to penetrate the host cuticle/wall; 2) parasite–host cell fusion, in which the fusion cell died and the parasite died; and 3) growth, in which parasites grew but soon died; parasites rarely reproduced and infections did not continue in culture. Resistance to parasite infection was usually transmitted as a dominant trait and did not segregate as a single locus during meiosis. In certain crosses, transmission of resistance was non-mendelian.  相似文献   

12.
Summary The fine structure of erythrocytic stages of Plasmodium knowlesi was compared with that of the same parasite isolated from its host cell by a saponin technique. Rhesus monkeys experimentally infected with Plasmodium knowlesi were the source of parasitized red cells. The erythrocytic stages of this Plasmodium showed all the organelles described in other mammalian forms; the nucleus lacked a typical nucleolus but contained a cluster of granules. P. knowlesi did not have protozoan-type mitochondria as do the avian and reptilian forms, but had double-membrane-bounded bodies as observed in other mammalian malarial parasites.The isolation procedure caused a slight swelling of the parasite, but in general, the structure and structural relationships of the parasite were preserved. However, the isolation technique gave a new insight into the connection of the host cell cytoplasm with the large, so-called food vacuoles of the parasite. The parasite freed from its host cell showed clear spaces where the large vacuoles had been. The content of these vacuoles had been removed together with the red cell cytoplasm. As the nature of the isolation procedure precluded any disruption of the parasite itself, these findings support our view that the vacuoles are not true food vacuoles. If these were true food vacuoles, they would be completely enclosed by a parasite membrane within the parasite cytoplasm. However, we have demonstrated that they represent extensions of host cell cytoplasm in direct communication with the rest of the red cell. The outer membrane surrounding the intra-erythrocytic parasites disappeared after isolation of the parasite from the host cell. This strongly suggested that the outer membrane is of host cell origin. The budding process of the merozoites from a schizont was also described and discussed.This paper is contribution No. 558 from the Army Research Program on Malaria and was supported in part by Research Grant AI 08970-01 from the United States Public Health Service.  相似文献   

13.

Background  

Mycorrhizal fungi form intimate associations with their host plants that constitute their carbon resource and habitat. Alnus spp. (Betulaceae) are known to host an exceptional species-poor and specialized ectomycorrhizal (ECM) fungal community compared to other tree species, but the host-specificity pattern and its significance in terms of fungal diversification and speciation remain poorly documented. The degree of parallel speciation, host switching, and patterns of biogeography were explored in the historical associations between alders and three ECM taxa of Basidiomycetes: Alnicola (Agaricales), Alpova (Boletales), and Lactarius (Russulales). The aim was to develop an evolutionary framework on host specificity and diversification of Basidiomycetes in this highly specialized plant-fungus symbiosis.  相似文献   

14.
Summary Harveyella mirabilis is a colourless red algal alloparasite which grows on and within its photosynthetic hostOdonthalia floccosa. Cells ofHarveyella establish secondary pit connections (PCs) with other parasite cells and with cells of the host. Small, uninucleate conjunctor cells are produced by parasite cells and remain connected to them by PCs. Conjunctor cells may fuse with either an adjacent host or parasite cell, with the parasite-conjunctor cell PC becoming either a host-parasite or parasite-parasite secondary PC. Occasionally the conjunctor cell does not fuse with an adjacent cell (either host or parasite) and degenerates. The secondary pit plug which forms between a parasite cell and its conjunctor cell always develops with two structurally distinct surfaces characteristic of a host-parasite pit plug. Only if the conjunctor cell fuses with another parasite cell will the structure of the pit plug be altered to that of a parasite-parasite pit plug. Fungal hyphae also invade the region of infection, andHarveyella cells respond by producing nonfunctional conjunctor cells that grow towards adjacent hyphae. Evidence suggests that secondary PCs may be induced to form mechanically, by the physical presence of another cell, rather than in direct response to a message received from an adjacent cell. The mechanism of secondary PC formation described here is similar to that reported for the closely related alloparasiteHolmsella and may be common to a number of red algal parasitic associations. Helen Margaret Quirk, B. Sc. (Hons), M. Sc. (1953–1982), student, research assistant and friend, died after a long illness on October 24, 1982.  相似文献   

15.
Janczewskia morimotoi Tokida was successfully cultured from spore to reproductive maturity on its host Laurencia nipponica Yamada. The spore penetrates the host without requirement for wound or abrasion sites, growing between host cortical cells and developing a superficial and an endophytic system simultaneously. During the juvenile period, when the parasite is nonpigmented, it differentiates a cortex and the proliferating endophytic filaments enlarge causing a displacement of layers of host cells into the parasitic tissue. Host cells contacted by cells of the parasite exhibit increased wall thickness, cytoplasmic density and vesicle formation. Pit connections between host and parasite cells were rarely observed whereas penetration of host cell walls was seen commonly. As the parasite increases in size, its cells become pigmented evenly throughout the cortex and host cells show less obvious reactions to the parasite. At this same time, the parasite develops branches and reproductive structures. Host plant segments less than 3 cm long failed to grow when infected with spores of the parasite whereas longer segments were not significantly affected by the parasite. In the absence of the host, the parasite cannot complete its development. Although J. morimotoi is well pigmented at maturity, the absence of pigmentation in the juvenile stage, penetration of host cells, and effect on host growth in culture strongly suggest that it is parasitic during at least its early development.  相似文献   

16.
Summary An examination was made of the ultrastructure of haustoria or intracellular hyphae in four fungi: an obligate parasite (Puccinia hordei), a facultative parasite (Exobasidium japonicum) and two facultative saprophytes (Phytophthora palmivora and Sclerotinia fructigena). P. hordei haustoria showed the typical ultrastructure and host-parasite interface of most of the obligate parasites already studied. Connections between the host endoplasmic reticulum and host plasmalemma were observed at the encapsulation site. Tubules connecting the haustorial cytoplasm with the encapsulation, through the haustorial wall were occasionally seen. The host cell remained alive in the presence of the parasite. E. japonicum haustoria lacked a neck and encapsulation and were irregularly shaped, with branches which appeared to be partly surrounded by a sheath. Some of these branches showed cytoplasmic connections between the parasite and the host through the sheath. All the observed haustoria of E. japonicum were anucleate and contained only a few mitochondria and sparse membranes. The host cell was dead and its organelles disorganized. P. palmivora haustoria were simple with nucleus, endoplasmic reticulum, mitochondria and Golgi bodies. Neither sheath nor encapsulation was observed, and the host cell was also dead and disorganized. S. fructigena did not produce haustoria of any kind, the intercellular hyphae became intracellular by the degradation of the host cell walls, and the host cells were killed in advance of the growing hyphae.It is suggested that a new definition of haustorium is required to include all these intermediate haustorial bodies which cannot be included within the present concept of haustorium.  相似文献   

17.
Summary The unusual thick-walled cells in contact with host and parasite vessels, first noted by Calvin 1967 in sinkers (structures composed of tracheary elements and parenchyma that originate from parasite bark strands that grow centripetally to the host vascular cambium and become embedded by successive development of xylem) of the mistletoePhoradendron macrophyllum (Englem.) Cockerell, have been investigated by modern methods of microscopy. The wall is thickest in cells abutting large-diameter host vessels, less so against smaller host vessels and those abutting sinker vessels. Transmission electron microscopy reveals the wall to be complex, consisting of a basement primary wall, upon which two developments of secondary-wall material occur. These are represented by lignified thickenings, in the form of flanges, and a labyrinth of wall ingrowths characteristic of a transfer cell. The wall ingrowths occur mostly in the primary-wall regions between the flanges, but when in contact with a large host vessel the ingrowths also differentiate on top of the flanges. Cells with such a transfer cell labyrinth have not been previously reported in the endophytic system of a mistletoe. The cells are confined to the xylary portion of the primary haustorium and sinkers. InP. macrophyllum, however, the cells differ from ordinary transfer cells in that they have differentiated as part of a flange parenchyma cell. This arrangement represents a novel anatomical situation. The name flange-walled transfer cell is used for these cells. The xylem of primary haustorium and sinkers also contain numerous ordinary flange cells. In both flange-walled transfer cells and ordinary flange cells the flanges are lignified and form a reticulate pattern of thickenings, separated by rounded areas of primary pit fields. The extent of development of the flange wall can vary in different parts of a sinker. At the host interface, the existence of a flange-walled transfer cell in direct contact with a vessel reflects a site associated with high loading into the parasite. Similarly, a labyrinth against a sinker vessel indicates a site of unloading from surrounding sinker tissue into the vessel for subsequent longdistance transport within the parasite.Dedicated to the memory of Dr. Katherine Esau (1898–1997)  相似文献   

18.
Secondary pit connections are common between cells of hosts and parasites in the widespread phenomenon of red algal parasitism. The DNA-specific fluorochrome 4′,-6-diamidino-2-phenylindole (DAPI) reveals that in host-parasite secondary pit connection (SPC) formation between the parasitic red alga Choreocolax polysiphoniae and its host Polysiphonia confusa, a nucleus and other cytoplasmic components of the parasite are delivered into the cytoplasm of a host cell. Host cells receive large numbers of parasite nuclei and these, apparently arrested in G1, are maintained intact in host cells for periods of several weeks. Within these enlarged, differentiated cells, starch accumulates and cytoplasmic organelles proliferate as the central vacuole decreases in size. Host nuclear DNA synthesis is stimulated in the infected host cell, resulting in an increase in the number of host nuclei, or an increase in DNA in each of the existing host nuclei (i.e. somatic polyploidy). Occasionally, infected host cells will recommence division and engender a new host branch. Microspectrofluorometry of nuclear DNA quantitatively confirms not only the identity and transfer of parasite nuclei to host cells, but also the transfer of parasite nuclei to other parasite cells. Measurements also reveal that the single nucleus of Choreocolax becomes progressively more polyploid as cells become larger and more highly differentiated. Secondary pit connection formation between Choreocolax and Polysiphonia provides the mechanism for the transfer of parasite genetic information (via the parasite nucleus and cytoplasm) into the host. The parasite nuclei may thereby control and redirect the physiology of the host for the benefit of the parasite.  相似文献   

19.
Cryptosporidium spp. are responsible for devastating diarrhoea in immunodeficient individuals. In the intestinal tract, the developmental stages of the parasite are confined to the apical surfaces of epithelial cells. Upon invasion, Cryptosporidium incorporates the microvillous membrane of the enterocyte to form the parasitophorous vacuole (PV) and sequesters itself from the host cytoplasm by rearranging the host cytoskeleton. Cryptosporidium parvum has minimal anabolic capabilities and relies on transporters and salvage pathways to meet its basic metabolic requirements. The cholesterol salvage pathway is crucial for the development of protozoan parasites. In this study, we have examined the sources of cholesterol from C. parvum infecting enterocytes. We illustrated that the intracellular stages of Cryptosporidium as well as the oocysts shed by the host, contain cholesterol. Incubation of infected enterocytes in lipoprotein‐free medium impairs parasite development and results in substantial decrease in cholesterol content associated with the PV. Among lipoproteins, LDL constitutes an important source of cholesterol for Cryptosporidium. Dietary cholesterol incorporated into micelles is internalized into enterocytes by the NPC1L1 transporter. We showed that C. parvum also obtains cholesterol from micelles in enterocytes.Pharmacological blockade of NPC1L1 function by ezetimibe or moderate downregulation of NPC1L1 expression decreases parasite infectivity. These observations indicate that, despite its dual sequestration from the intestinal lumen and the host cytoplasm, C. parvum can, in fact, obtain cholesterol both from the gut's lumen and the host cell. This study highlights the evolutionary advantages for epicellular pathogens to access to nutrients from the outside and inside of the host cell.  相似文献   

20.
L. Lange  L. W. Olson 《Protoplasma》1981,106(1-2):83-95
Summary An ultrastructural study of the development of the resting sporangium ofSynchytrium endobioticum (Schilb.) Perc. infecting potato cells is presented. The resting sporangium is found to have a single large, centrally placed nucleus with a prominent nucleolus through its entirein situ development. The cytoplasmic organization of the resting sporangium is further characterized by numerous membrane-bound lipid bodies and osmiophilic bodies. The latter have a characteristic sieve-like appearance, probably because certain storage components have been extracted during preparation for electron microscopy. Because of the similar location and appearance of these osmiophilic bodies it is suggested that they are identical to what has earlier (based on light microscopy) been described as chromatin granules; and the ultrastructural studies presented here show that nucleolar discharge which was described from light microscopic observations as leading to chromatin granules in the cytoplasm, and finally forming the nuclei of the zoospores (bally 1912,curtis 1921,percival 1910) simply does not occur.The appearance of dense fibrillar-like structures on the sporangial surface at an early stage of resting sporangium development ultrastructurally distinguishes the resting sporangium from the zoosporangium. The development of the layered portion of the thick sporangial wall is shown to be due to the fusion of vacuoles containing pre-made wall fibrils with the cell membrane. It is suggested that the inner compact wall layer which is essentially substructureless is formed by the membrane itself.The characteristic wings of the matureS. endobioticum resting sporangium originate from the potato host cell wall. Remnants of host cell organelles in the outermost layer of the resting sporangium wall show that degradation of the host cell cytoplasm contributes to wall formation of the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号