首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The macronuclear DNAs from 20 different species ofTetrahymena were characterized using alternating Orthogonal Field (AOF) gel electrophoresis. Each species has approximately 300 different macronuclear DNA molecules that range in size from about 100–2000 kb pairs. Although the individual macronuclear DNA molecules are not well resolved on an AOF gel, most species have a unique profile of macronuclear DNA. The sequences that hybridize with histone H4 (Tetrahymena) and ubiquitin (yeast) genes were identified on the separated macronuclear DNA molecules of the different species. All species have 2 histone H4 genes located on macronuclear DNA molecules of different sizes. This is consistent with the duplication of the histone H4 gene prior to the speciation events leading to the various species ofTetrahymena. The number and sizes of the macronuclear DNA molecules that hybridize with the ubiquitin probe vary from species to species. A grouping of the different species ofTetrahymena based on this hybridization pattern paralels groupings of the species based on ribosomal RNA sequences and isoenzymes. Some intraspecific variation among different strains ofTetrahymena thermophila was detected using ubiquitin and 5S ribosomal RNA as probes.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

2.
Hypotrich ciliates present a macronuclear genome consisting of gene-sized instead of chromosome-sized DNA molecules. Exploiting this unique eukaryotic genome feature, we introduce, for the first time in ciliates, a rapid and easy PCR method using telomeric primers to isolate small complete macronuclear DNA molecules or minichromosomes. Two presumably abundant macronuclear DNA molecules, containing ribosomal genes, were amplified from the Oxytricha (Sterkiella) nova complete genome after using this method, and then were cloned and sequenced. The 5S rDNA sequence of O. (S.) nova is the third one reported among hypotrich ciliates; its primary and secondary structure is compared with other eukaryotic 5S rRNAs. The ribosomal protein S26 gene is the first one reported among ciliates. This “End-End-PCR” method might be useful to obtain similar gene-sized macronuclear molecules from other hypotrich ciliates, and, therefore, to increase our knowledge on ribosomal genes in these eukaryotic microorganisms.  相似文献   

3.
ABSTRACT. Total cellular DNA from the ciliates Halteria grandinella and Trithigmostoma cucullulus was analyzed by agarose gel electrophoresis. The macronuclear DNA (MAC DNA) of Halteria consisted of very small fragments, which suggests that the MAC DNA organization of oligotrichs resembles that of hypotrichs (gene-sized DNA). The MAC DNA of Trithigmostoma , a cyrtophorid having a heteromeric MAC, also existed as small fragments, but with a significant fraction (20–30%) comprising larger molecules unresolved by the method used. It is suggested that MAC heteromery is related to the differential localization of two kinds of DNA molecules of different sizes.  相似文献   

4.
In Tetrahymena, the DNA of the macronucleus exists as very large (100 to 4,000-kb) linear molecules that are randomly partitioned to the daughter cells during cell division. This genetic system leads directly to an assortment of alleles such that all loci become homozygous during vegetative growth. Apparently, there is a copy number control mechanism operative that adjusts the number of each macronuclear DNA molecule so that macronuclear DNA molecules (with their loci) are not lost and aneuploid death is a rare event. In comparing Southern analyses of the DNA from various species of Tetrahymena using histone H4 genes as a probe, we find different band intensities in many species. These differences in band intensities primarily reflect differences in the copy number of macronuclear DNA molecules. The variation in copy number of macronuclear DNA molecules in some species is greater than an order of magnitude. These observations are consistent with a developmental control mechanism that operates by increasing the macronuclear copy number of specific DNA molecules (and the genes located on these molecules) to provide the relatively high gene copy number required for highly expressed proteins. © 1992 Wiley-Liss, Inc.  相似文献   

5.
Macronuclear DNA from the protozoan G. chattoni, a holotrichous ciliate, was analyzed. Most, if not all, of the macronuclear DNA is subchromosomal, ranging in size from above 100 kb down to 2.1 kb, with molecules in the lower molecular weight range being resolvable by gel electrophoresis into reproducible, specific, discrete size classes. A prominent class of linear 9.3 kb molecules consists of single free rRNA genes. Upon denaturation and partial renaturation, a high percentage of total macronuclear DNA was found as single-stranded circles. Sequence analysis showed that a minimum of 38 tandem repeats of the sequence CCCCAA is present in inverted orientation at each end of most or all Glaucoma macronuclear DNA molecules, including the rDNA. This sequence must therefore be recognized during site-specific fragmentation of chromosomes in macronuclear development.  相似文献   

6.
.We have analyzed the macronuclear DNA of Paramecium tetraurelia using orthogonal-field-altemation gel electrophoresis. The mean size of the linear macronuclear DNA molecules is approximately 450 kb. Less than 6% of the macronuclear DNA is larger than 800 kb. Using pulse times of 20, 40, 60 and 90 s we show that the macronuclear fragment containing the A type variable surface antigen gene migrates reproducibly as a 320-kb linear DNA. Over the same pulse times we describe the unusual migration of the ribosomal RNA gene (rDNA) of P. tetraurelia. At pulse times of 20 and 40 s the rDNA migrates at limit mobility (300 and 500 kb, respectively) whereas with 60- and 90-s pulse times, 2 components of rDNA are observed; 1 fraction independent of pulse time migrating at limit mobility, and a 2nd component migrating between 100-kb and 400-kb linear markers. Based upon previous electron micrographic studies of Paramecium rDNA as well as data presented here we conclude that the majority of Paramecium rDNA molecules are a circular DNA form.  相似文献   

7.
Telomeres, the G-rich sequences found at the ends of eukaryotic chromosomes, ensure chromosome stability and prevent sequence loss from chromosome ends during DNA replication. During macronuclear development in Tetrahymena, the chromosomes fragment into pieces ranging from 20 kb to 1,500 kb. Tetrahymena telomerase, a ribonucleoprotein, adds telomeric (TTGGGG)n repeats onto telomeres and onto the newly generated macronuclear DNA ends. We have investigated whether telomerase RNA levels increase during macronuclear development, since such an increase might be expected during chromosomal fragmentation. The steady-state level of the telomerase RNA component was used to estimate the abundance of telomerase present in mating and nonmating Tetrahymena. Northern blot analysis revealed that in vegetatively growing Tetrahymena, there were 18,000–40,000 copies of telomerase RNA per cell. In mating cultures, the levels of RNA increased 2-to 5-fold at 9–15 h, and 1.5- to 3.5-fold in starved nonmating cultures. This increase in telomerase RNA paralleled telomerase activity, which also increased slightly in mating and starved nonmating cells. © 1992 Wiley-Liss, Inc.  相似文献   

8.
9.
Interspecific variability in hypotrichous ciliates The genome organization of hypotrichous ciliates differs fundamentally from those of most other eukaryotic organisms. Every cell has two kinds of nuclei as is characteristic for ciliatese small generative micronuclei (Mi) whose DNA has a high molecular weight and which is organized in chromosomes, and vegetative macronuclei (Ma) which are very rich in DNA. The macronuclear DNA consists of so-called “gene-sized” DNA pieces, an organization which is not found in any other organism. This extraordinary genome organization offers a convenient experimental approach for studying evolutionary divergence at different molecular levels: 1. whole genomes, 2. subfractions of genomes, and 3. enzyme proteins. The comparison of unfractionated genomic DNA of hypotrichous ciliates by Dna-DNA hybridizations has yielded an unsuspected result: species that are closely related according to their morphology show an unusually low amount of sequence homology. The underlying reason might be that hypotrichous species separated early in eukaryotic evolution. Whereas the morphology of “closely related” species has changed only little, molecular evolution has led to major genomic changes that reflect the great evolutionary age of the species. The separation of native macronuclear DNA by gel electrophoresis produces species-specific DNA banding patterns based on different copy numbers of individual “gene-sized” DNA pieces in different species. These banding patterns allow the discrimination of sibling species which are morphologically very similar or even undistinguishable. Higher taxa can also be identified by means of DNA banding patterns. Cloned α- and β-tubulin genes were used in hybridization experiments to study the evolutionary divergence of individual DNA sequences in different hypotrichous species. The unusual Magenome organization makes such an analysis especially convenient. Characteristics of individual genes such as length number of sequence variants, copy number, and pattern of restriction sites can be compared with this method. The digestion of Mi-DNA with restriction endonucleases reveals differences in the repetitive DNA fraction of those genomes. Specific differences can be detected between closely related species and even between different populations of one species. The comparison of evolutionary divergence at the DNA level was supplemented by a comparison at the protein level. Enzyme electrophoresis proved to be a suitable method for the identification of otherwise indistinguishable species. Genetic ivergency (D-values) was estimated on the basis of allozyme data and a dendrogram was constructed reflecting the amount of genetic similarity between the species investigated. The discussion considers advantages and disadvantages of molecular characteristics for attacking taxonomic, phylogenetic, and evolutionary problems.  相似文献   

10.
We investigated the macronuclear DNA genomes of several marine and fresh-water ciliates. The marine forms studied were: Uronema nigricans, Parauronema virginianum, Parauronema acutum, and two strains of Miamiensis avidus; the fresh-water ciliates included: Tetrahymena pyriformis, Paramecium octaurelia, and P. caudatum. The organisms were cultured axenically and the DNA extracted from isolated and purified macronuclear preparations. Reassociation rate constants of purified DNA preparations used to calculate kinetic complexity were determined both optically and by hydroxyapatite chromatography. Analytical complexity was determined chemically. Ciliate macronuclear DNA appeared to reassociate as a single unique sequence, except for a small fraction (4% of the total DNA) that was repetitive and renatured rapidly. Values for the kinetic complexities of macronuclear DNA in these forms varied over a relatively narrow range, from 1.5 to 3.8 times 1010 daltons, and were only 7–15x larger than that of the bacterium Escherichia coli. On the other hand, values for analytical complexities of macronuclear DNA of marine and fresh-water ciliates varied over two orders of magnitude and were related to the size of the animals. It is suggested that ploidy levels of macronuclear DNA in these ciliates may represent a functionally permanent amplification of the genome.  相似文献   

11.
Callejas S  Gutiérrez JC 《Protist》2002,153(2):133-142
Hypotrich ciliates present a macronuclear genome consisting of gene-sized instead of chromosome-sized DNA molecules. Exploiting this unique eukaryotic genome feature, we introduce, for the first time in ciliates, a rapid and easy PCR method using telomeric primers to isolate small complete macronuclear DNA molecules or minichromosomes. Two presumably abundant macronuclear DNA molecules, containing ribosomal genes, were amplified from the Oxytricha (Sterkiella) nova complete genome after using this method, and then were cloned and sequenced. The 5S rDNA sequence of O. (S.) nova is the third one reported among hypotrich ciliates; its primary and secondary structure is compared with other eukaryotic 5S rRNAs. The ribosomal protein S26 gene is the first one reported among ciliates. This "End-End-PCR" method might be useful to obtain similar gene-sized macronuclear molecules from other hypotrich ciliates, and, therefore, to increase our knowledge on ribosomal genes in these eukaryotic microorganisms.  相似文献   

12.
Pulsed‐field gel electrophoresis (PFGE) was applied to analyze the molecular karyotype of the ciliate Didinium nasutum. The data obtained indicate that D. nasutum belongs to the ciliate species with subchromosomal macronuclear genome organization. No short “gene‐sized” DNA molecules were detected. Macronuclear DNAs formed a continuous spectrum from 50 kbp to approximately 1,000 kbp in size with a peak plateau between 250 and 400 kbp. The macronuclear DNA molecules were packed into chromatin bodies of 80–265 nm in size. Comparison of the PFGE and electron microscopic data shows that most if not all chromatin bodies contain more than one DNA molecule.  相似文献   

13.
A comparative study of macronuclear DNA molecules from the following Paramecium species: the P. aurelia complex, P. caudatum, P. bursaria, P. putrinum and P. multimicronucleatum was performed using pulsed-field gel electrophoresis. The electrophoretic pattern was constant and unique for each species, and is referred to herein as its electrokaryotype. Large differences were observed between Paramecium species according to the range and major size of macronuclear DNA fragments, while different strains of the same species, even belonging to different syngens, were characterized by the same electrokaryotype. In this respect sibling species from the P. aurelia complex are as similar as syngens in other Paramecium species, but are unlike conventional species. The principles and value of electrokaryotype analysis for application to ciliates are discussed.  相似文献   

14.
The extrachromosomal rDNA molecules from a number of Tetrahymena strains wered racterized by restriction enzyme mapping using three different restriction enzymes combined with gel blotting and hybridization analysis. Strains from four out of six recently described species were found to contain an intron in the 26s rRNA coding region. The evolutionary relationship among the species of the T. pyriformis complex was examined on the basis of the rDNA maps with emphasis on similarities between two of the new species and the widely studied T. thermophila and T. pigmentosa. Examination of a large number of T. pigmentosa strains showed this species to exhibit an unusual polymorphism with respect to its rDNA. It is suggested that recombinational cross-over events play a role in the formation of new rDNA alleles in this species.  相似文献   

15.
The macronucleus of Tetrahymena contains a large number of DNA molecules of subchromosomal size. They belong to about 270 species each one occurring at an average number of 45 copies Macronuclei divide unequally and nothing is known of segregation control. This and the elimination and degradation of DNA during macronuclear amitosis make the clonal stability of macronuclei a problem of qualitative and quantitative control on a subchromosomal level. We studied the contribution of DNA elimination to the quantitative composition of the macronucleus cytophotometrically in single cells of different strains. This was done under standard conditions and under conditions known to influence the amount of macronuclear DNA. The following results were found: Elimination of DNA occurs at almost every division. The size of the elimination body is highly variable but still positively correlated with the macronuclear DNA content. In T. thermophila the amount of eliminated DNA is 2.5% of the G2 content and is not dependent on the growth state. It varies with species, amounting to as much as 8% in T pigmentosa. During conditions which increase the macronuclear DNA content, very little DNA is eliminate. On the other hand, large amounts are eliminated under other conditions causing the macronuclear DNA content to decrease. DNA to be eliminated at division is synthesized at the same time as bulk DNA. We developed a computer program which helps us study the effects of DNA elimination and unequal divisions upon the copy numbers of subchromosomal DNA classes. The result indicates that in a given cell line at least one of the DNA molecules becoms extinct after 60 generations which we expect would cause the cell's extinction and restrict a clone's life to 60 generations. As this does not happen in nature, there must be some control of the copy numbers preventing their extinction during vegetative multiplication. Whether elimination increases or decreases the imbalance of genes remains to be investigated. © 1992 Wiley-Liss, Inc.  相似文献   

16.
利用等强度均一电场(Contour-clamped Homogeneous Electric Field,CHEF)凝胶电泳技术比较了三种被孢霉菌株及两株诱变菌株的电泳核型。结果显示深黄被孢霉AS3.3410(Mortierella isabellina AS3.3410)及其诱变株M(6-22)、MH(23)具有相同的染色体DNA分子的数目和大小,而与拉曼被抱霉AS3.3413(M.ramanniana AS3.3413)和葡酒色被孢霉AS3.3414(Mvinacea AS3.3414)显示出明显的差异。三种被抱霉明显的染色体带数分别为15条,10条和11条,分离的染色体DNA大小范围大约为390kb-2660Kb,基因组大小分别约为21640Kb、15040Kb、19670Kb。  相似文献   

17.
Extrachromosomal ribosomal RNA genes in Tetrahymena: structure and evolution   总被引:21,自引:0,他引:21  
The macronuclear ribosomal RNA genes from a number of strains within several species of Tetrahymena have been characterized. Restriction enzyme analysis revealed that individual strains all contained entirely homogeneous populations of extrachromosomal palindromic ribosomal DNA, varying in molecular size from 12 × 106 to 14 × 106 in different strains. Considering that the evolutionary distance among some of the species is estimated to be of the order of 106 years, the rDNA from all the species exhibited a strikingly high similarity in the localization of their restriction sites. Nevertheless, differences both inside and outside the gene region were clearly detectable, showing that the rDNA sequences have diverged in all species.Genetic polymorphism with respect to rDNA structure exists in Tetrahymena, but seems to be rare. In only two out of five species examined (T. borealis and T. pigmentosa) interbreeding strains differing in rDNA structure were found. While the differences detected in the T. borealis rDNA were confined to a small size difference located at the non-coding ends of the molecule, several differences were detected in the rDNA from the T. pigmentosa strains. One of the differences was shown to be due to the presence of an intervening sequence within the structural gene for 26 S rRNA in some of the strains. An intervening sequence of similar size located at the same position within the 26 S gene region was found by R-loop mapping in all strains of the species T. thermophila. Restriction enzyme analysis indicates that the rDNA from two other species contains a similar intervening sequence, and we therefore suggest that the size and localization of the intervening sequence is evolutionarily stable. The two intervening sequences examined so far, however, are not identical, as revealed by restriction enzyme mapping.  相似文献   

18.
Localization of genes for ribosomal RNA in the nuclei of Oxytricha fallax   总被引:1,自引:0,他引:1  
The location of ribosomal RNA (rRNA) genes in the nuclei of the ciliated protozoan, Oxytricha fallax, was analysed by in situ hybridization. The micronuclear genome of O. fallax has typical chromosomal DNA organization. Macronuclei, although derived from micronuclei, lack chromosomes and instead contain short pieces of DNA ranging from 500 to 20 000 base pairs in length. In situ hybridization was carried out to determine if specific DNA sequences are limited to certain locations within the macronucleus, or if sequences are randomly arranged. Cells were fixed, squashed and then hybridized with 3H-labelled RNA synthesized in vitro using cloned O. fallax rDNA as a template. After autoradiography, silver grains were found to be distributed uniformly over the entire macronucleus without any detectable localization to specific regions. The uniformity of hybridization indicates that rDNA molecules are randomly dispersed throughout the macronucleus and suggests that the macronuclear genetic apparatus lacks any substantial multimolecular organization. S phase macronuclei also showed a uniform distribution of rDNA molecules, irrespective of the position of the replication band at which DNA synthesis takes place. The micronuclei, in contrast, did not show any hybridization, even in cells in which macronuclei were heavily labelled. Macronuclear anlagen, in which the micronuclear chromosomes are polytenized, also do not hybridize. This absence of hybridization indicates a much lower concentration of rDNA in the micronucleus than in the macronucleus. The change in rDNA concentration of rRNA genes presumably occurs during the complicated process of development of a macronucleus from a micronucleus.  相似文献   

19.
A novel form of extrachromosomal rDNA has been identified in conjugating Tetrahymena cells. This rDNA consists of 11 kb linear double-stranded DNA molecules, each containing a single rRNA gene copy. The DNA sequence, tandemly repeated CCCCAA (Blackburn and Gall 1978) found at the termini of extrachromosomal palindromic rDNA (the macronuclear form found in vegetatively growing cells), is also present at the corresponding terminus of the 11 kb rDNA. The other end of this molecule has an extra 0.3 kb segment of DNA covalently attached to the DNA region corresponding to the center of the palindromic rDNA. The kinetics of appearance and synthesis of the 11 kb rDNA early in macronuclear development are consistent with its being an intermediate in rDNA amplification.  相似文献   

20.
Summary Behavior of ribosomal RNA genes in the process of somatic hybridization was analyzed using hybrids Nicotiana tabacum + Atropa belladonna. Blothybridization of parental species DNAs to 32P-rDNA specific probes revealed two classes of ribosomal repeats in both tobacco and nightshade; their length was 11.2 kb, 10.4 kb (tobacco) and 9.4 kb, 10.2 kb (night-shade). For analysis of hybrids, labelled 32P rDNA specific probes were hybridized to DNA of parental species and somatic hybrids digested with restriction endonucleases EcoR1, EcoRV and BamH1. A new class of ribosomal DNA repeat, absent in parental species, was found in hybrid line NtAb-1. Possible mechanisms of appearence of a new rDNA class in the process of somatic cell fusion are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号