首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Hubert Felle 《Planta》1988,176(2):248-255
In cells of Zea mays (root hairs, coleoptiles) and Riccia fluitans (rhizoids, thalli) intracellular Ca2+ and pH have been measured with double-barrelled microelectrodes. Free Ca2+ activities of 109–187 nM (Riccia rhizoids), 94–160 nM (Riccia thalli), 145–231 nM (Zea root hairs), 84–143 nM (Zea coleoptiles) were found, and therefore identified as cytoplasmic. In a few cases (Riccia rhizoids), free Ca2+ was in the lower millimolar range (2.3±0.8 mM). A change in external Ca2+ from 0.1 to 10 mM caused an initial and short transient increase in cytoplasmic free Ca2+ which finally levelled off at about 0.2 pCa unit below the control, whereas in the presence of cyanide the Ca2+ activity returned to the control level. It is suggested that this behaviour is indicative of active cellular Ca2+ regulation, and since it is energy-dependent, may involve a Ca2+-ATPase. Acidification of the cytoplasmic pH and alkalinization of the vacuolar pH lead to a simultaneous increase in cytoplasmic free Ca2+, while alkalinization of pHc decreased the Ca2+ activity. Since this is true for such remote organisms as Riccia and Zea, it may be concluded that regulation of cytoplasmic pH and free Ca2+ are interrelated. It is further concluded that double-barrelled microelectrodes are useful tools for investigations of intracellular ion activities in plant cells.Symbols and abbreviations m, m membrane potential difference, changes thereof - PVC polyvinylchloride  相似文献   

2.
Bush DS  Jones RL 《Plant physiology》1990,93(3):841-845
Recent advances in the development of methods for measuring cytoplasmic Ca2+ levels in higher plant cells are discussed. Emphasis is placed on the new generation of Ca2+-sensitive fluorescent dyes particularly fura-2 and indo-1. These dyes offer many advantages for the measurement of cytosolic Ca2+ levels. They can be introduced into cells in a nonintrusive manner, their Kd for Ca2+ matches plant cell cytoplasmic Ca2+ levels, and shifts in their emission (indo-1) or excitation (fura-2) spectra following Ca2+ binding permit accurate quantitation of Ca2+ activities. Examples of cytoplasmic Ca2+ levels measured in plants with fura-2 and indo-1 are presented, and the prospects for applying more advanced technologies to fluorescent dye measurement are discussed.  相似文献   

3.
Markus Braun  Peter Richter 《Planta》1999,209(4):414-423
The localization of cytoplasmic free calcium and a dihydropyridine (DHP) receptor, a putative calcium channel, was recorded during the opposite graviresponses of tip-growing Chara rhizoids and Chara protonemata by using the calcium indicator Calcium Crimson and a fluorescently labeled dihydropyridine (FL-DHP). In upward (negatively gravitropically) growing protonemata and downward (positively gravitropically) growing rhizoids, a steep Ca2+ gradient and DHP receptors were found to be symmetrically localized in the tip. However, the localization of the Ca2+ gradient and DHP receptors differed considerably during the gravitropic responses upon horizontal positioning of the two cell types. During the graviresponse of rhizoids, a continuous bowing downward by differential flank growth, the Ca2+ gradient and DHP receptors remained symmetrically localized in the tip at the centre of growth. However, after tilting protonemata into a horizontal position, there was a drastic displacement of the Ca2+ gradient and FL-DHP to the upper flank of the apical dome. This displacement occurred after the apical intrusion and sedimentation of the statoliths but clearly before the change in the growth direction became evident. In protonemata, the reorientation of the growth direction started with the appearence of a bulge on that site of the upper flank which was predicted by the asymmetrically displaced Ca2+ gradient. With the upward shift of the cell tip, which is suggested to result from a statolith-induced displacement of the growth centre, the Ca2+ gradient and DHP receptors became symmetrically relocalized in the apical dome. No major asymmetrical rearrangement was observed during the following phase of gravitropic curvature which is characterized by slower rates of bending. Labeling with FL-DHP was completely inhibited by a non-fluorescently labeled dihydropyridine. From these results it is suggested that FL-DHP labels calcium channels in rhizoids and protonemata. In rhizoids, positive gravitropic curvature is caused by differential growth limited to the opposite subapical flanks of the apical dome, a process which does not involve displacement of the growth centre, the calcium gradient or calcium channels. In protonemata, however, it is proposed that a statolith-induced asymmetrical relocalization of calcium channels and the Ca2+ gradient precedes, and might mediate, the rearrangement of the centre of growth, most likely by the displacement of the Spitzenk?rper, to the upper flank, which results in the negative gravitropic reorientation of the growth direction. Received: 13 February 1999 / Accepted: 25 June 1999  相似文献   

4.
Extracellular ATP elicits transient elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in osteoblasts through interaction with more than one subtype of cell surface P2-purinoceptor. Elevation of [Ca2+]i arises, at least in part, by release of Ca2+ from intracellular stores. In the present study, we investigated the possible roles of protein kinase C (PKC) in regulating these signaling pathways. [Ca2+]i of indo-1-loaded UMR-106 osteoblastic cells was monitored by spectrofluorimetry. In the absence of extracellular Ca2+, ATP (100 μM) induced transient elevation of [Ca2+]i to a peak 57 ± 7 nM above basal levels (31 ± 2 nM, means ± S. E. M., n = 25). Exposure of cells to the PKC activator 12-O-tetradecanoyl-β-phorbol 13-acetate (TPA, 100 nM) for 2 min significantly reduced the amplitude of the ATP response to 13 ± 4 nM (n = 11), without altering basal [Ca2+]i. Inhibition was half-maximal at approximately 1 nM TPA. The Ca2+ response to ATP was also inhibited by the PKC activators 1,2-dioctanoyl-sn-glycerol or 4β-phorbol 12, 13-dibutyrate, but not by the control compounds 4α-phorbol or 4α-phorbol 12, 13-didecanoate. Furthermore, exposure of cells to the protein kinase inhibitors H-7 or staurosporine for 10 min significantly attenuated the inhibitory effect of TPA. However, these protein kinase inhibitors did not prolong the [Ca2+]i response to ATP alone, indicating that activation of PKC does not account for the transient nature of this response. When the effects of other nucleotides were examined, TPA was found to cause significantly greater inhibition of the response to the P2Y-receptor agonists, ADP and 2-methylthioATP, than the response to the P2U-receptor agonist, UTP. These data indicate that activation of PKC selectively inhibits the P2Y signaling pathway in osteoblastic cells. In vivo, endocrine or paracrine factors, acting through PKC, may regulate the responsiveness of osteoblasts to extracellular nucleotides. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The effect of exposure of single rat pituitary cells to 50 Hz sine wave magnetic fields of various strengths on the intracellular free Ca2+ concentration ([Ca2+]i) was studied by using dual-emission microfluorimetry, using indo-1 as probe. A 30 min exposure of the cells to vertical 50 μT peak magnetic field triggered a long-lasting increase in [Ca2+]i from a basal value of about 185 ± 4 nM to 326 ± 41 nM (S.E.; n = 150). The vertical and horizontal components of the static magnetic field were 57 and 15 μT, respectively. The 50 Hz ambient magnetic field was always below 0.1 μT rms. The effect was observed both at 25 ± 2 °C and at 37 ± 2 °C. Responsive cells, for which [Ca2+]i rose to values above 309 nM, were identified as lactotrophs and represented 29% of the total pituitaries. [Ca2+]i increase, for the most part, was due to Ca2+ influx through voltage-dependent dihydropiridine-sensitive calcium channels inhibited by PN 200-110. However, neither Ca2+ channel blockers nor removal of Ca2+ from the external medium during exposure completely prevented the field-induced [Ca2+]i increase. Additional experiments using an MTT colorimetric assay showed that alteration of Ca2+ homeostasis of lactotrophs was associated with impairment of some mitochondrial processes. © Wiley-Liss, Inc.  相似文献   

6.
Kenneth R. Robinson 《Planta》1996,198(3):378-384
The initially apolar zygotes of the brown algae,Fucus andPelvetia, form their main axes during the hours following fertilization and each cell expresses its axis by germinating at one location. The germinating region is destined to become the rhizoid and the rest of the zygote gives rise to the thallus. In response to unilateral blue light, the zygotes organize their developmental axes so that the rhizoids emerge on the shaded side, away from the light source. In the research reported here, the signaltransduction elements involved in the photopolarization ofPelvetia fastigiata De Toni zygotes have been investigated. It was found that exposure of zygotes to 90or 150-min pulses of unilateral light in the absence of extracellular Ca2+ completely eliminated photopolarization; that is, the cells formed their rhizoid-thallus axes randomly with respect to the light direction, while controls similarly exposed to light in normal (10 mM) Ca2+ were well polarized. When the cells were incubated in Ca2+-free sea water for an hour before being given the light pulse (while still in Ca2+-free sea water), they exhibited an unusual negative polarization: they formed their rhizoids on the hemisphere nearer the light source. Organic and inorganic calcium-channel blockers reduced or abolished photopolarization when present during light pulses. Reducing external Ca2+ to one-tenth of normal has the paradoxical effect of increasing calcium influx intoPelvetia zygotes. When zygotes were given light pulses in reduced extracellular calcium, the degree of photopolarization was increased substantially. These data are consistent with the idea that the formation of an intracellular gradient of [Ca2+] is an essential part of the polarization process. The fungus-derived calmodulin antagonist, ophiobolin A, blocked or greatly delayed germination when present continuously at a concentration of 100–300 nM. However, when present at 300 nM during a brief light pulse, it markedly increased the sensitivity of the cells to light. These results suggest that calmodulin may be the mediator of intracellular [Ca2+] gradients in the photopolarization process.  相似文献   

7.
A method is described for monitoring intracellular ionized calcium (Ca2+) and determining kinetic and thermodynamic parameters of Ca+-extrusion from intact lymphocytes. The method uses ratiometric spectrofluorometry and the fluorescent Ca2+ dye indo-1. Lymphocytes were loaded with calcium and placed in a low calcium medium. A novel formula for calculation of intracellular Ca2– that corrects for background fluorescence and fluorescence quenching was used. Calcium extrusion resulted in exponential decrease in cytoplasmic Ca2+ with a rate constant of 0.031 ± 0.003 sec–1, maximal rate of 23 ± 7 nM/sec, dissociation constant of 366 ± 63 nM, Hill coefficient of 2.3 ± 0.4, Q10 of 2.58 ± 0.28, and activation energy of 18.3 Kcal/mol. This method should allow for characterization of the Ca2+-extrusion system of lymphocytes and may be applicable to other blood cell types.Abbreviations DMSO dimethyl sulfoxide - HEPES [N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid],sodium salt - Indo-1/AM acetoxymethyl ester of indo-1 - IP3 inositol 1,4,5-triphosphate - IP4 inositol 1,3,4,5-tetrakisphosphate - RPMI Roswell Park Memorial Institute — 1640 culture medium - TPEN tetrakis-[2-pyridylmethyl]-ethylenediamine  相似文献   

8.
1. 1. The effect of stimulation of adenylate cyclase by pancreozymin-C-octapeptide on the cyclic AMP level of rat pancreatic fragments has been investigated.
2. 2. In normal Krebs-Ringer bicarbonate medium pancreozymin-C-octapeptide causes a slight increase in pancreatic cyclic AMP level; this increase can be considerably enhanced by incubation in a calcium-free incubation medium.
3. 3. The dose-responce curve for pancreazymin-C-octapeptide in calcium-free medium is shifted to lower peptide concentrations, compared to the curve in normal Krebs-Ringer bicarbonate medium.
4. 4. The maximal stimulatory effect of pancreozymin-C-octapeptide id obtained at a 1-methyl-3-isobutylxanthine concentration of 10 mM.
5. 5. It suffices to lower the Ca2+-concentration of the medium from 2.5 to 1.5 mM to get the maximal increase in cyclic AMP content under influence of pancreozymin-C-octapeptide.
6. 6. It is concluded that extracellular calcium antagonizes the stimulation of adenylate cyclase by pancreozymin-C-octapeptide. This suggest that a low cytoplasmic Ca2+-concentration is required for the maximal response of acinar cell adenylate cyclase to pancreozymin.
Keywords: cyclic AMP formation; Ca2+; Pancreozymin-C-octapeptide; Adeny; ate cyclase; (Rat pancreas)  相似文献   

9.
We have studied the modulation by intracellular Ca2+of the epithelial Ca2+channel, ECaC, heterologously expressed in HEK 293 cells. Whole-cell and inside-out patch clamp current recordings were combined with FuraII-Ca2+measurements:1. Currents through ECaC were dramatically inhibited if Ca2+was the charge carrier. This inhibition was dependent on the extracellular Ca2+concentration and occurred also in cells buffered intracellularly with 10 mM BAPTA.2. Application of 30 mM [Ca2]einduced in non-Ca2] buffered HEK 293 cells at −80 m V an increase in intracellular Ca2+([Ca2]i) with a maximum rate of rise of 241 ±15nM/s (n= 18 cells) and a peak value of 891 ± 106 nM. The peak of the concomitant current with a density of 12.3 ± 2.6 pA/pF was closely correlated with the peak of the first-time derivative of the Ca2+transient, as expected if the Ca2+transient is due to influx of Ca2+. Consequently, no Ca2+] signal was observed in cells transfected with the Ca2+impermeable ECaC mutant, D542A, in which an aspartate in the pore region was neutralized.3. Increasing [Ca2+]iby dialyzing the cell with pipette solutions containing various Ca2+] concentrations, all buffered with 10 mM BAPTA, inhibited currents through ECaC carried by either Na+or Ca2+] ions. Half maximal inhibition of Ca2+currents in the absence of monovalent cations occurred at 67 nM (n between 6 and 8), whereas Na+currents in the absence of Ca2+] and Mg2+were inhibited with an IC50of 89 nM (n between 6 and 10). Currents through ECaC in the presence of 1 mM Ca2+and Na+, which are mainly carried by Ca2+, are inhibited by [Ca2]iwith an IC50of 82 nM (n between 6 and 8). Monovalent cation currents through the Ca2+impermeable D542A ECaC mutant were also inhibited by an elevation of [Ca2]i(IC50= 123 nM, n between 7 and 18).4. The sensitivity of ECaC currents in inside-out patches for [Ca2]iwas slightly shifted to higher concentrations as compared with whole cell measurements. Half-maximal inhibition occurred at 169 nM if Na+was the charge carrier (n between 4 and 11) and 228 nM at 1 mM [Ca2]e(n between 4 and 8).5. Recovery from inhibition upon washout of extracellular Ca2+(whole-cell configuration) or removal of Ca2+from the inner side of the channel (inside-out patches) was slow in both conditions. Half-maximal recovery was reached after 96 ± 34 s (n= 15) in whole-cell mode and after 135 ± 23 s (n= 17) in inside-out patches.6. We conclude that influx of Ca2+through ECaC and [Ca2]iinduce feedback inhibition of ECaC currents, which is controlled by the concentration of Ca2+in a micro domain near the inner mouth of the channel. Slow recovery seems to depend on dissociation of Ca2+from an internal Ca2+binding site at ECaC.  相似文献   

10.
Germination of Dryopteris spores is mediated by the physiologically active, far-red-absorbing form of phytochrome, Pfr, and external Ca2+ is necessary for the transduction of the light signal. Because knowledge about the cytoplasmic calcium ion concentration, [Ca2+]i, is of great importance for understanding the role of calcium during signal transduction, this value was measured using fura-2 in fern spores undergoing the normal developmental progression into germination. Fura-2 was loaded into the spores by electroporation, which does not disrupt the normal process of germination. The intensity of the fluorescence emission of the loaded fura-2 was analysed by a microspectrophotometric assay of single spores, and successful loading could be obtained by the application of ten electrical pulses (field strength 7.5 kV · cm–1, half-life (time constant) 230 s). Fura-2 was alternately excited by light of wavelengths 355 and 385 nm through an inverted fluorescence microscope, and the emitted fura-2 fluorescence was collected by a silicon-intensified video camera. The cytoplasmic calcium ion concentration was calculated from the ratio of the camera output obtained for both wavelengths and displayed by a pseudo-color technique. Spores responded to changes of the extracellular Ca2+ concentration, and this observation is considered as evidence that fura-2 is loaded into the cytoplasm. The substitution of a low external [Ca2+] (1 mM ethyleneglycol-bis(2-aminoethyl-ether) {ie166-01},N-tetraacetic acid (EGTA)) by 1 mM CaCl2 caused a fast increase of [Ca2+]i from approx. 50 nM to above 500 nM. In contrast, the subsequent substitution of CaCl2 by EGTA decreased [Ca2+]i again below 100 nM within 0.5 h. Furthermore, the application of ionomycin could initiate a change in [Ca2+]i according to the Ca2+ gradient established between the extracellular medium and cytoplasm. In spores sown on a Ca2+-free medium, [Ca2+]i, analysed in a buffer containing EGTA, was found to be around 50 nM during the first days of cultivation, independent of the irradiation protocol. However, if spores were grown in darkness on a Ca2+-containing medium and analysed in EGTA, [Ca2+]i was significantly higher ( 500 nM). In red-light-irradiated spores, [Ca2+]i was found to decrease with increasing time after irradiation, and was determined to be less than 100 nM when analysis was done 44 h after germination was initiated by the light treatment.Dedicated to Professor H. Mohr on the occasion of his 60th birthday  相似文献   

11.
Using indo-1- and fura-2-based microfluorometry for measuring the cytoplasmic free calcium concentration ([Ca2+] in ), the properties of caffeine-induced Ca2+ release from internal stores were studied in rat cultured central and peripheral neurons, including dorsal root ganglion (DRG) neurons, neurons from then. cuneatus, CA1 and CA3 hippocampal regions, and pyramidal neocortical neurons. Under resting conditions, the Ca2+ content of internal stores in DRG neurons was high enough to produce caffeine-triggered [Ca2+] in transients. Prolonged exposure of caffeine depleted the caffeine-sensitive stores of releasable Ca2+; the degree of this depletion depended on caffeine concentration. The depletion of the caffeine-sensitive internal stores to some extent was linked to calcium extrusion via La3+-sensitive plasmalemmal Ca2+-ATPases. Caffeine-induced Ca2+ release deprived internal stores in DRG neurons, but they refilled themselves spontaneously within 10 min. Pharmacological manipulation with caffeine-sensitive stores interferred with the depolarization-induced [Ca2+] in transients. In the presence of low caffeine concentration (0.5–1.0 mM) in the extracellular solution, the rate of rise of the depolarization-triggered [Ca2+] in transients significantly increased (by a factor of 2.15 ± 0.29) suggesting the occurrence of Ca2+-induced Ca2+ release. When the caffeine-sensitive stores were emptied by prolonged application of caffeine, the amplitude and rate of rise of the depolarization-induced [Ca2+] in transients decreased. These findings suggest the involvement of internal caffeine-sensitive calcium stores in generation of calcium signal in sensory neurons. In contrast, in all types of central neurons tested the resting Ca2+ content of internal stores was low, but the stores could be charged by transmembrane Ca2+ entry through voltage-operated calcium channels. After charging, the stores in central neurons spontaneously lost releasable calcium content and within 10 min they became completely empty again. We suggest that internal Ca2+ stores in peripheral and central neurons, although having similar pharmacological characteristics, handle Ca2+ ions in a different manner. Calcium stores in sensory neurons are continuously filled by releasable calcium and after discharging they can be spontaneously refilled, whereas in central neurons internal calcium stores can be charged by releasable calcium only transiently. Caffeine-evoked [Ca2+] in transients in all types of neurons were effectively blocked by 10 mM ryanodine, 5 mM procaine, 10 mM dantrolene, or 0.5 mM Ba2+, thus sharing the basic properties of the Ca2+-induced Ca2+ release from endoplasmic reticulum.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 16–25, January–February, 1994.  相似文献   

12.
In this study, confocal ratio analysis was used to image the relationship between cytoplasmic free calcium concentration ([Ca2+]c) and the development of root hairs of Arabidopsis thaliana. Although a localized change in [Ca2+]c that preceded or predicted the site of root hair initiation could not be detected, once initiated the majority of emerging root hairs showed an elevated [Ca2+]c (>1 μM) in their apical cytoplasm, compared with 100– 200 nM in the rest of the cell. These emerging root hairs then moved into a 3–5 h phase of sustained elongation during which they showed variable growth rates. Root hairs that were rapidly elongating exhibited a highly localized, elevated [Ca2+]c at the tip. Non-growing root hairs did not exhibit the [Ca2+]c gradient. The rhd-2 mutant, which is defective in sustained root hair growth, showed an altered [Ca2+]c distribution compared with wild-type. These results implicate [Ca2+]c in regulating the tip growth process. Treatment of elongating wild-type root hairs with the Ca2+ channel blocker verapamil (50 μM) caused dissipation of the elevated [Ca2+]c at the tip and cessation of growth, suggesting a requirement for Ca2+ channel activity at the root hair tip to maintain growth. Manganese treatment also preferentially quenched Indo-1 fluorescence in the apical cytoplasm of the root hair. As manganese is thought to enter cells through Ca2+-permeable channels, this result also suggests increased Ca2+ channel activity at the tip of the growing hair. Taken together, these data suggest that although Ca2+ does not trigger the initiation of root hairs, Ca2+ influx at the tip of the root hair leads to an elevated [Ca2+]c that may be required to sustain root hair elongation.  相似文献   

13.
《Life sciences》1997,61(16):PL227-PL234
Calcium ions have been implicated in the mechanisms of ventricular arrhythmias. Impairment of intercellular coupling by calcium overload is considered to facilitate ventricular fibrillation (VF) and to sup-press its self termination. According to our hypothesis, any compound that decreases intracellular calcium concentration [Ca2+]i during VF can serve as defibrillating drug. In this study, we examined the effect of d-sotalol and tedisamil on calcium overload in cultured, spontaneously beating rat cardiomyocytes. The changes of [Ca2+]i were measured by indo-1 method and the intercellular synchronization by image analysis. The results showed that increase in [Ca2+]o from 1.9 mM to 3.9 mM increased [Ca2+]i from 100 nM to 320 nM and transformed the synchronized cell movement to an asynchronous one. Administration of 5 × 10−6 M d-sotalol or 10−6 M tedisamil, decreased the [Ca2+]i to its basic level and restored the synchronized activity. In summary: Our results showed that increase in [Ca2+]i known to caused inhibition of intercellular coupling, that could lead to arrhythmia and fibrillation while d-sotalol or tedisamil prevented this effect. These results support our hypothesis, that class III antiarrhythmic compounds with positive inotropic effect, increase intercellular synchronization, by decreasing free [Ca2+]i, most probably by increasing the Ca2+ uptake by the sarcoplasmic reticulum, and therefore act as a defibrillating compound.  相似文献   

14.
This study demonstrates a simple, rapid, and reproducible microassay for real-time monitoring of Ca2+-sequestration by isolated sarcoplasmic reticulum (SR) using ratiometric dual-emission spectrofluorometry and the fluorescent calcium-binding dye indo-1. The SR membranes were isolated by differential centrifugation and suspended in a medium including Ca2+, indo-1, ATP and oxalate. As Ca2+ was sequestered by SR, Ca2+-bound indo-1 fluorescence decreased equivalently but reciprocally to the increase in Ca2+ -free indo-1 fluorescence. The kinetic and thermodynamic properties of Ca2+-transport measured fluorometrically were similar to those measured radiometrically by 45Ca2+, with the exception that the former monitors changes in free Ca2+ whereas the latter monitors total Ca2+. An estimate of the maximal rate of change in total Ca2+ could be made by multiplying the maximal rate of change in free Ca2+ by the ratio of initial total Ca2– to free Ca2– concentration.  相似文献   

15.
Summary Pollen tubes ofLilium longiflorum were loaded with quin-2 to determine the cytoplasmic free calcium. Quin-2-fluorescence was detected at 500 nm with alternating excitation at 340 nm and 360 nm. The calcium2+-concentration was obtained using the intensity ratio R=I340/I360. The analysis exhibits a [Ca2+] of nearly 10–7mol·l–1 in the tip region and about 2·10–8 mol·l–1at the tube base, near the pollen grain. The data give evidence for the existence of a continuous gradient of free calcium within growing pollen tubes of various length.  相似文献   

16.
The free cytoplasmic Ca2+ concentration ([Ca2+]i) in rat brain synaptosomes estimated by the indicator quin 2 is 104±8 nM (S.D.) in artificial cerebrospinal fluid (1.2 mM Ca2+), but decreases at lower Ca2+ concentrations in the medium. The presence of quin 2 in the synaptosomes does not affect either the spontaneous release of transmitter (γ-aminobutyric acid) or the release induced by K+ depolarisation. In quin 2-loaded synaptosomes, depolarisation by K+ causes an abrupt increase in [Ca]i (less than 2-fold) that is approximately proportional to the extent of depolarisation, whereas depolarisation by veratrine alkaloids produces a slow rise in [Ca]i. The increase in [Ca]i produced by K+ depolarisation does not occur in the absence of Ca2+ in the medium. The data are consistent with a direct correlation between [Cai] and transmitter release in functional synaptosomes. The pH in synaptosomes estimated by the indicator quene 1 is 7.04±0.07 and is stable in media containing 5 mM bicarbonate. The pH in synaptosomes was decreased by protoveratrine but not by K+ depolarisation.  相似文献   

17.
The patch clamp K+-conductance G of the nicotinic acetylcholine receptor (AcChoR) dimer (Mr≈ 590 000) of Torpedo californica, reconstituted in lipid vesicles, which decreases with increasing Ca2+-concentration in the range 0.1≤[Ca2+]/mM≤2, can be quantitatively rationalized by Ca2+-binding to negatively charged sites, causing charge reversal reducing the normal K+-accumulation in the channel vestibules. Cleavage of the sialic acid residues (up to 20±2 per dimer) reduces the K+-accumulation factor α = G0/G from α = 3±0.8 of the normal AcChoR to α = 2±0.7 for the desialyated AcChoR. Desialysation also decreases the Ca2+-sensitivity of the conductance from G0 = 96.6±6 pS at [Ca2+]→0 of the normal AcChoR to G0 = 84.2±6 pS. Endogenous hyperphosphorylation (to up to 28±4 phosphates per dimer) enhances the vestibular K+-accumulation to α = 3.6±0.7, without affecting the Ca2+-dissociation equilibrium constant KCa = 0.34± 0.05 mM at 295 K (22 °C). Most interestingly, even in the absence of AcCho, the hyperphosphorylated AcChoR dimer exhibits spontaneously long-lasting open channel events (τ = 200±50 ms). At [AcCho] = 2 μM there are two open states (τ 1 = 20±10 ms, τ 2 = 140±60 ms) whereas the normal AcChoR dimer has only one open state (τ = 6±4 ms). – Physiologically important is that (i) the sialic acid and phosphate residues render the AcChoR conductance sensitive to control by divalent ions and (ii) the channel behavior of the hyperphosphorylated AcChoR without AcCho appears to indicate pathophysiologically high phosphorylation activity of the cell leading, among others, to myasthenic syndromes. Received: 10 November 1997 / Revised version: 12 January 1998 / Accepted: 7 March 1998  相似文献   

18.
The data presented here describe ratio-imaging of in intracellular free calcium (Ca2+i) during the self-incompatibility (SI) response in pollen. Use of the ratiometric indicator, fura-2 dextran, in pollen tubes of Papaver rhoeas has provided new, detailed information about the spatial-temporal alterations in Ca2+i, and has permitted calibration of alterations in the concentration of intracellular free calcium ([Ca2+]i) in the SI response. Ratio images demonstrate that, like other pollen tubes, normally growing P. rhoeas pollen tubes exhibit a tip-focused gradient of Ca2+bfi, with levels reaching 1–2 μM at the extreme apex of the pollen tube. Non-growing pollen tubes did not exhibit this tip-focused gradient. Basal levels of Ca2+i in the shank of the pollen tube were fairly consistent and had a mean value of 210 nM, with low-level fluctuations +/? 50 nM observed. Challenge with incompatible S proteins resulted in S-specific, rapid and dramatic alterations in [Ca2+]i within a few seconds of challenge. Increases in [Ca2+]i were visualized in the subapical/shank regions of the pollen tube and alterations in [Ca2+]i in this region subsequently increased for several minutes, reaching> 1.5 μM. At the pollen tube tip, a diminution of the tip-focused gradient was observed, which following some fluctuation, was reduced to basal levels within ~1 min. Our data suggest that some of these alterations in [Ca2+]i might be interpreted as a calcium wave, as the changes are not global. Although the increases in [Ca2+]i in the subapical/shank region are very rapid, because tip [Ca2+]i oscillates during normal growth, it is difficult to ascertain whether the increases in the shank of the pollen tube precede the decreases in [Ca2+]i at the pollen tube tip.  相似文献   

19.
Rolf Borchert 《Planta》1985,165(3):301-310
For experimental induction of crystal cells (=crystal idioblasts) containing calcium-oxalate crystals, the lower epidermis was peeled from seedling leaflets of Gleditsia triacanthos L., exposing the crystal-free mesophyll and minor veins to the experimental solutions on which leaflets were floated for up to 10 d under continous light. On 0.3–2.0 mM Ca-acetate, increasing numbers of crystals, appearing 96 h after peeling, were induced. The pattern of crystal distribution changed with Ca2+-concentration ([Ca2+]): at low [Ca2+], crystals formed only in the non-green bundlesheath cells surrounding the veins, believed to have a relatively low Ca2+-extrusion capacity; at higher [Ca2+], crystals developed in up to 90% of the mesophyll cells, and at supraoptimal [Ca2+], large extracellular crystals formed on the tissue surface. By sequential treatments with solutions of different [Ca2+], the following three phases were identified in the induction of crystal cells: (1) during the initial 24-h period (adaptive aging), Ca2+ is not required and crystal induction is not possible; (2) during the following 48 h (induction period), exposure to 1–2 mM Ca-acetate induces the differentiation of mesophyll cells into crystal cells; (3) crystal growth begins 72 h after the start of induction. In intact leaflets of Albizia julibrissin Durazz., calcium-oxalate crystals are found exclusively in the bundle-sheath cells of the veins, but crystals were induced in the mesophyll of peeled leaflets floating on 1 mM Ca-acetate. Exposure to inductive [Ca2+] will thus trigger the differentiation of mature leaf cells into crystal cells; the spatial distribution of crystals is determined by the external [Ca2+] and by the structural and functional properties of the cells in the tissue.  相似文献   

20.
in vitro using these myosins and of localization studies using antiserum raised against each heavy chain, we suggested that both myosins are molecular motors for generating the motive force for cytoplasmic streaming in higher plant cells. The 170-kDa myosin is expressed not only in somatic cells but also in germinating pollen. In contrast, the 175-kDa myosin is distributed only in somatic cells. In the tip region of growing pollen tubes, it has been demonstrated that a tip-focused Ca2+ gradient is indispensable for growth and tube orientation. Cytoplasmic streaming in this region has been shown to be inactivated by high concentrations of Ca2+. The motile activity in vitro of 170-kDa myosin is suppressed by low (μM) levels of Ca2+ through its CaM light chain, suggesting that this suppression is one of the mechanisms for inactivating cytoplasmic streaming near the tip region of pollen tubes. The motile activity in vitro of 175-kDa myosin is also inhibited by Ca2+ at concentrations higher than 10−6M. It has been revealed that the elevation of cytosolic Ca2+ concentrations causes the cessation of cytoplasmic streaming even in somatic cells. Therefore, Ca2+-sensitivity of the motile activity of myosin appears to be a general molecular basis for Ca2+-induced cessation of cytoplasmic streaming. Received 6 September 2000/ Accepted in revised form 7 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号