首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The photoregulation of chloroplast development in pea leaves has been studied by reference to three polypeptides and their mRNAs. The polypeptides were the large subunit (LSU) and the small subunit (SSU) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO), and the light-harvesting chlorophyll a/b protein (LHCP). The polypeptides were assayed by a sensitive radioimmune assay, and the mRNAs were assayed by hybridization to cloned DNA probes. LSU, LSU mRNA, and LHCP mRNA were detectable in etiolated seedlings but LHCP, SSU, and SSU mRNA were at or below the limit of detection. During the first 48 hr of de-etiolation under continuous white light, the mRNAs for LSU, SSU, and LHCP increased in concentration per apical bud by about 40-fold, at least 200-fold, and about 25-fold, respectively, while the total RNA content per apical bud increased only 3.5-fold. In the same period, the LSU, SSU, and LHCP contents per bud increased at least 60-, 100-, and 200-fold, respectively. The LHCP increased steadily in concentration during de-etiolation, whereas the accumulation LSU, SSU, and SSU mRNA showed a 24-hr lag. The accumulation of SSU, SSU mRNA, and LHCP mRNA showed classical red/far-red reversibility, indicating the involvement of phytochrome in the regulatory mechanism. LSU and LSU mRNA were induced equally well by red and far-red light. The LHCP failed to accumulate except under continuous illumination. These results indicate that the accumulation of SSU is controlled largely through the steady-state level of its mRNA, which is in turn almost totally dependent on light as an inducer and on phytochrome as one of the photoreceptors. The accumulation of LSU is largely but not totally determined by the level of its mRNA, which appears to be under strong photoregulation, which has yet to be shown to involve phytochrome. Phytochrome is involved in the regulation of LHCP mRNA levels but substantial levels of the mRNA also occur in the dark. LHCP accumulation is not primarily governed by the levels of LHCP mRNA but by posttranslational stabilization in which chlorophyll synthesis plays a necessary but not sufficient role.  相似文献   

4.
R. Oelmüller  H. Mohr 《Planta》1986,167(1):106-113
Expression of nuclear genes involved in plastidogenesis is known to be controlled by light via phytochrome. Examples are the small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase and the light harvesting chlorophyll a/b binding protein of photosystem II (LHCP). In the present study we show that, beside phytochrome, the integrity of the plastid is essential for the expression of the pertinent nuclear genes as measured at the level of translatable mRNA. When the plastids are severely damaged by photooxidation in virtually carotenoid-free mustard (Sinapis alba L.) seedling cotyledons (made carotenoid-free by the application of Norflurazon, NF), almost no SSU, no SSU precursor, LHCP and LHCP precursor can be detected by immunological assays, and almost no translatable mRNA of SSU and LHCP can be found, although the levels and rates of phytochrome-mediated syntheses of representative cytoplasmic, mitochondrial and glyoxisomal enzymes are not adversely affected and morphogenesis of the mustard seedling proceeds normally (Reiß et al. 1983; Planta 159, 518–528). Norflurazon per se has no effect on the amount of translatable mRNA of SSU and LHCP as shown by irradiation of NF-treated seedlings with far-red light (FR) which strongly activates phytochrome but does not cause photooxidation in the plastids. It is concluded that a signal from the plastid is required to allow the phytochrome-mediated appearance of translatable mRNA for SSU and LHCP. Seedlings not treated with NF show a higher level of translatable mRNALHCP in red light (RL) compared to FR, whereas the mRNASSU levels are the same in RL and FR. These facts indicate that the level of translatable mRNALHCP is adversely affected if the apoprotein is not incorporated into the thylakoid membrane.Abbreviations FR far-red light (3.5 W m-2) - LHCP light harvesting chlorophyll a/b binding protein of photosystem II - LSU large subunit of RuBPCase - NF Norflurazon - RL red light (6.8 W m-2) - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - SSU small subunit of RuBPCase - WL white light (28 W m-2)  相似文献   

5.
We have examined the expression of a maize nucleartuf gene(tufA) coding for the chloroplast translation elongation factor EF-Tu. Southern analysis revealed that the maize chloroplast EF-Tu was encoded by at least two distinct genes in the nuclear genome. In order to know the effect of light on the expression of thetufA gene during maize chloroplast biogenesis, we have analyzed the steady-state level of thetufA mRNAs by Northern analysis. The steady-state level of thetufA mRNAs was similar in both continuous light- and dark-grown seedlings. The level of thetufA mRNAs also maintained at relatively same level during light-induced greening of etiolated seedlings and all examined developmental stages. These results indicate that the gene expression of the maize chloroplast EF-Tu is rarely light-regulated at it’s mRNA level during chloroplast biogenesis.  相似文献   

6.
7.
In a preceding paper (Oelmüller and Mohr 1986, Planta 167, 106–113) it was shown that in the cotyledons of the mustard (Sinapis alba L.) seedling the integrity of the plastid is a necessary prerequisite for phytochrome-controlled appearance of translatable mRNA for the nuclear-encoded small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase and the light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCP). It was concluded that a signal from the plastid is essential for the expression of nuclear genes involved in plastidogenesis. The present study was undertaken to characterize this postulated signal. Chloramphenicol, an inhibitor of intraplastidic protein synthesis and Norflurazon, an inhibitor of carotenoid synthesis (to bring about photooxidative sensitivity of the plastids) were applied. We obtained the following major results. (i) After a brief period of photooxidative damage a rapid decrease of the above translatable mRNAs was observed. Conclusion: the signal is short-lived and thus required continually. (ii) Once the plastids became damaged by photooxidation, no recovery with regard to nuclear gene expression was observed after a transfer to non-damaging light conditions. Conclusion: even a brief period of damage suffices to prevent production of the signal. (iii) Chloramphenicol inhibited nuclear gene expression (SSU, LHCP) and plastidic development when applied during the early stages of plastidogenesis. Once a certain stage had been reached (between 36–48 h after sowing at 25° C) nuclear gene expression became remarkably insensitive toward inhibition of intraplastidic translation. Conclusion: a certain developmental stage of the plastid must be reached before the signal is released by the plastid. (iv) Under the growth conditions we adopted in our experiments the plastids in the mesophyll cells of mustard cotyledons developed essentially between 36 and 120 (-144) h after sowing. Only during this period could translatable mRNAs for SSU and LHCP be detected. Conclusion: the signal is released by the plastids only during this time span.Abbreviations CAP Chloramphenicol (D-threo) - cFR continuous far-red light - FR far-red light (3.5 W·m-2) - GPD glyceraldehyde-3-phosphate dehydrogenase - LHCP light-harvesting chlorophyll a/b-binding protein of photosystem II - LSU large subunit of RuBPCase - MDH malate dehydrogenase - NF Norflurazon - NIR nitrite reductase - Pfr physiologically active form of phytochrome - R red light (6.8 W·m-2) - RG9-light long-wavelength far-red light (10 W·m-2) - RuBPCase ribulose-1,5-bisphosphate carboxylase - SSU small subunit of RuBPCase - WLs strong white light (28 W·m-2) - photoequilibrium of phytochrome at wavelength   相似文献   

8.
9.
K. Kloppstech 《Planta》1985,165(4):502-506
The levels of nuclear mRNAs for three light-inducible proteins (light-harvesting chlorophyll a/b protein, small subunit of ribulose-1,5-bisphosphate carboxylase and early light-induced protein) have been analyzed under light-dark and constant light conditions. The levels of all three mRNAs have been found to vary considerably during the day, both under ligh-dark and under constant light conditions, demonstrating the existence of diurnal and circadian rhythmicity in the expressionoof these nuclear-coded plant proteins. The levels of two of these mRNAs have been found to be enhanced 2 h before the beginning of illumination when active phytochrome levels are still low.Abbreviations ELIP early light-inducible protein - LHCP light-harvesting chlorophyll alb protein; poly(A)RNA=polyadenylated RNA - (ss)RuBPCase (small subunit) ribulose-1,5-bisphosphate carboxylase  相似文献   

10.
11.
12.
13.
We have previously shown that heat-shock in the dark evokes photomorphogenesis-like effects and circadian rhythmicity at the level of mRNAs when applied to emerging pea plantlets during several consecutive days [15]. Here we extend these findings by showing that a temperature shift to 10 °C above average and a single heat-shock are sufficient for induction of circadian rhythmicity and changes in morphogenesis. The maximum response to a single heat-shock occurs at days 2 to 3 after sowintreatments intensifies the morphogenetic effect. The heat-shocked plantlets have an elevated level of the xanthophyll lutein in the dark. Upon illumination of heat-shocked plantlets accumulation of chloroplast pigments as well as that of individual thylakoid membrane proteins and their corresponding mRNAs occur much faster than in the etiolated controls. This is reflected in an accelerated formation of grana stacks. Therefore, heat-shock seems to evoke a responsiveness of plantlets similar to that obtained earlier by other authors using pre-illumination. The working hypothesis is put forward that induction or synchronization of circadian rhythmicity by either light or heat-shock might be sufficient to explain the observed morphogenetic changes.Abbreviations CCI reaction center I core - CHS cyclic heat-shock - D1 protein 32 kDa psbA gene product - ELIP early light-inducible protein - LHCP light-harvesting chlorophyll a/b protein - PCOR protochlorophyllide oxidoreductase - SSU small subunit of ribulose-1,5-bisphosphate carboxylase - WSP proteins of the oxygen-evolving (water-splitting) complex  相似文献   

14.
In the present work, the pigmentation regulated by light was investigated in ray floret (rf) of Gerbera hybrida. When inflorescences from stage 1 were covered with aluminium foil in vivo the pigmentation of the rf petals was strongly blocked and the gene expression of CHS (Chalcone synthase) and DFR (Dihydroflavonol-4-reductase) was inhibited. Similar results were obtained when the detached rfs were cultured in vitro. Covering of the leaves on the plants resulted in reduced pigmentation compared with the covering of inflorescences in vivo. Removal of the green bracts did not affect the pigmentation significantly and the anthocyanin concentration was maintained at a level similar to that of the control. The ultrastructure of the plastids in rf petals was examined to investigate the possible role of photosynthesis in light regulation of flower pigmentation. Plastids within rf epidermal cells showed a characteristic chloroplast morphology in flowers at stage 2, which deteriorated by stage 3. They then changed to a chromoplast-like structure in fully opened rf petals (stage 6). Similar chromoplast-like structures were observed in the plastids of the rf petals from inflorescences both shaded in vivo and in vitro. Additionally, DCMU, a photosynthetic inhibitor, did not show a significant effect on light-induced anthocyanin accumulation. Our data suggest that light is an important factor for pigmentation of rf petal in Gerbera and the petal itself acts as a light sensor site to perceive the light signal. From the different light qualities evaluated, blue light promoted gene expression of CHS and DFR, and red light enhanced the gene expression of CHS, indicating the photoreceptors responding to blue and red light involved in the photoregulation of flower pigmentation in Gerbera.  相似文献   

15.
The time course of appearance of competence to phytochrome (Pfr) was studied in cotyledons of mustard (Sinapis alba L.) with regard to the light-mediated accumulation of mRNAs encoding for SSU, CAB and the 23 kDa protein of the oxygen evolving complex of photosystem II (OEC). For each gene family a specific starting point of Pfr-induced mRNA accumulation was observed (SSU: 42 h; CAB: 36 h; OEC: 30 h). An increase of SSU-mRNA levels can be detected 24 h after sowing in dark-grown seedlings whereas for OEC the time points for the increase of mRNA are the same whether the seedlings are kept in darkness or induced by light via Pfr. For all gene families a responsiveness to Pfr (coupling point) could be demonstrated before the starting points. The coupling points are also gene specific (SSU: ca. 12 h; CAB and 23 kDa peptide of OEC: ca. 24 h). The responsiveness to light before the starting point indicates that the light-induced signal must be stored.  相似文献   

16.
Klaus Apel  Klaus Kloppstech 《Planta》1980,150(5):426-430
The effect of light on the biosynthesis of the light-harvesting chlorophyll a/b protein (LHCP) is investigated in wild-type barley (Hordeum vulgare L.) and in the chlorophyll b-less mutant chlorina f2. In dark-grown plants a short red light pulse triggers the appearance of mRNA activity for the LHCP. While the accumulation of this mRNA is controlled by phytochrome (Apel (1979) Eur. J. Biochem. 97, 183–188), the red light treatment is not sufficient to induce the appearance of the LHCP within the membrane. Thus, at least one of the subsequent steps in the biosynthetic pathway leading to the assembly of the LHCP is controlled by light. The red light-induced mRNA is taken up into the polysomes during the subsequent dark period and is translated in vitro in a cell-free protein synthesizing system. However, an accumulation of the freshly synthesized polypeptide within the plant is not observed. The apparent instability of the polypeptide might be explained by the deficiency of chlorophyll in the red light-treated plants. In the chlorophyll b-less barley mutant chlorina f2 an accumulation of the freshly synthesized apoprotein of the LHCP can be observed in the light. Thus, chlorophyll a formation seems to be a light-dependent step which is required for the stabilization of the LHCP.Abbreviations mRNA messenger RNA - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecylsulfate - LHCP light-harvesting chlorophyll a/b protein  相似文献   

17.
In cell-suspension cultures of Arabidopsis thaliana (L.) Heynh., transfer to auxin-free medium initiates regeneration leading to the formation of numerous rootlets around day 5. This process is promoted by continuous irradiation of the cell cultures with blue light (400–500 nm) while red light (600–700 nm) is ineffective in this respect. During the course of this process, two mRNA species, encoding, respectively, chalcone synthase and a plasmalemma channel protein, transiently accumulate. A second temporary increase in the steady-state level of these mRNAs is correlated with the onset of chloroplast development after 13–17 d of blue-light exposure of the cell cultures. During this cellular differentiation process a number of mRNAs start to accumulate which specify prominent plastid proteins: the small and the large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (SSU and LSU), respectively the light-harvesting chlorophyll-a/b protein II (LHCPII). These findings are in accordance with those obtained with carrot suspension cultures where a clear sequence of development, i.e. the formation of somatic embryos followed by bluelight-dependent chloroplast differentiation, has also been observed.Abbreviations AthH2 intrinsic membrane protein of Arabidopsis thaliana (gene) - CHS chalcone-synthase - 2,4-D 2,4-dichlorophenoxyacetic acid - EFR energy fluence rate - LHCPII cab light harvesting chlorophyll-a/b protein of photosystem II (gene) - LSU rbcL large subunit of Rubisco - SSU rbcS small subunit of Rubisco - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase Dedicated to Prof. Wolfhart Rüdiger on the occasion of this 60th birthdayThe research was supported by the Deutsche Forschungsgemeinschaft. We thank Mrs. I. Liebscher for her competent assistance. For the generous gift of cloned gene sequences we thank Prof. Dr. G. Link (Pflanzliche Zellphysiologie, Bochum, Germany), Dr. A. Batschauer (Biologisches Institut II/Botanik, Freiburg, Germany) and Dr. B. Weißhaar (MPI für Züchtungsforschung, Köln, Germany).  相似文献   

18.
Expression of the genes of the photosystem II (PSII) core polypeptides D1 and D2, of three proteins of the oxygen evolving complex of PSII and of the light harvesting chlorophyll a/b binding proteins (LHCP) has been compared in wild-type (wt) and in the y-1 mutant of Chlamydomonas reinhardtii. Since wt, but not y-1 cells produce a fully developed photosynthetic system in the dark, comparison of the two has allowed us to distinguish the direct effect of light from the influence of plastid development on gene expression. The PSII core polypeptides and LHCP are nearly undetectable in dark-grown y-1 cells but they accumulate progressively during light induced greening. The levels of these proteins in wt are the same in the light and the dark. The amounts of the proteins of the oxygen evolving complex do not change appreciably in the light or in the dark for both wt and y-1. Steady state levels of chloroplast mRNA encoding the core PSII polypeptides remain nearly constant in the light or the dark and are not affected by the developmental stage of the plastid. Levels of nuclear encoded mRNAs for the oxygen evolving proteins and of LHCP increase during light growth in wt and y-1. In contrast to wt, synthesis of LHCP proteins is not detectable in y-1 cells in the dark but starts immediately after transfer to light, indicating that LHCP synthesis is controlled by a light-induced factor or process. While the rates of synthesis of D1 and D2 are immediately enhanced by light in wt, this increase occurs only after a lag in y-1 and thus must be dependent on an early light-induced event in the plastid. These results show that the biosynthesis of PSII is affected by light directly, by the stage of plastid development, and by the interaction of light and events associated with plastid development.  相似文献   

19.
20.
We studied the effect of NaCl salinity on the development of cellular photosynthesis using a green, photomixotrophic, cell-suspension culture of Alternanthera philoxeroides (Mart.) Griseb. For these cells, increasing the concentration of sucrose in the media produces a rapid drop in net photosynthetic rate, which recovers as sucrose is depleted from the media. This predictable recovery provides a simple system to examine cellular photosynthetic development. Cells, unadapted to high salinity, were transferred to nutrient media with 30 mM sucrose (Control) or nutrient media with 30 mM sucrose and 100 mM NaCl (Salt). A dramatic increase in the dark respiration rate of Control and Salt cells during the first 6 d of the experiment produced net oxygen consumption in the light. The high dark respiration rates during this period were accompanied by a decline in total Chl and the amounts of two photosynthetic proteins, the light harvesting Chl a/b binding protein of photosystem II (LHCP) and the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco SSU). The dark respiration rate of Salt cells was greater than that of Control cells on days 4–8. After day 4, dark respiration rates decreased and net photosynthesis increased to stable values in both treatments at day 11 after media sucrose concentration reached a minimum. As dark respiration rates decreased and net photosynthetic rates increased, total Chl and the amounts of LHCP and rubisco SSU increased in both Control and Salt cells. The slower development of photosynthetic capacity in salt cells was correlated with a fresh weight that was 20% lower than that of control cells at the end of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号