首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. Chroomonas salina was cultured in seawater medium enriched with nitrate, phosphate, silicate, trace-metal ions, and vitamins, under 3 conditions: (A) light without other organic additions (photoautotrophic); (B) light and added glycerol (photoheterotrophic); (C) in darkness but with added glycerol (chemoheterotrophic). The heterotrophic cultures were initiated from a stock maintained on glycerol in continuous darkness for 41/4 years. The autotrophic culture was initiated from a corresponding stock maintained under continuous illumination without any organic growth substrate. The fine structure of organisms from simultaneously initiated cultures was compared after 1, 2, 3, and 4 weeks of growth. “Young'’cells from the autotrophic and heterotrophic cultures of comparable maturity had no recognizable ultrastructural difference. In organisms from both the photoautotrophic and photoheterotrophic cultures there was a progressive accumulation of starch and lipid with aging, but whereas in cells from the former the production of starch was arrested after early growth and lipid was concentrated thereafter, in those from the latter both metabolites continued to be produced with consequent rapid degeneration of the cytoplasm followed by autolysis. By contrast, flagellates grown in the chemoheterotrophic culture accumulated only starch, with vacuole formation replacing the lipid stores. In all cases, the lipid bodies appeared to differ from the membrane-bound droplets normally observed, which actually diminished with aging. Starch accumulation appeared to cause more rapid cytopathologic changes and autolysis. No evidence of chloroplastic phycobilisome-type aggregations was noted in organisms from any culture at any age.  相似文献   

2.
The unicellular green alga Dunaliella salina Teod. was frozen according to the following procedure: 3 days cold adaptation at 4°C, addition of 3.5 M glycerol as a cryoprotectant, slow cooling to –40°C, immersion in liquid nitrogen, and rapid thawing. The survival rate was higher when cells were grown, before freezing, in the presence of 2 M NaCl instead of 1 M NaCl (78 and 48% survival, respectively). This difference is probably due to the intracellular amount of glycerol, which increases with external NaCl concentration and, therefore, may enhance cell protection. Although cells grown in 4 M NaCl accumulated a large amount of glycerol in response to osmotic stress, they did not withstand freezing. The use of cryoprotectant was absolutely necessary for the cells to recover from storage at –196°C. Glycerol was used because it is naturally produced by Dunaliella salina and therefore is not toxic. Provided it was added slowly to avoid osmotic shock, 3.5 M glycerol gave better results than 1M glycerol (48 and 18% survival, respectively). Cold adaptation in the dark increased postthaw viability. Cells grown in 1 M or 2 M NaCl had a survival rate of 48 and 78%, respectively, when cold-adapted, against 10 and 42% when not cold-adapted. This adaptation could be due to the synthesis, at low temperature, of specific proteins because two bands (28–29 kDa) appeared when electrophoretically separated proteins from cold-adapted cells and control cells were compared. Also, it could be due to the degradation of starch that occurs in the dark and leads to glycerol accumulation. Our procedure has never been used to cryopreserve microalgae and could enhance reported survival rates.  相似文献   

3.
In this study, carotenoid and glycerol production in two unicellular green algae (Dunaliella salina and D. viridis) isolated from the Gave-Khooni salt marsh grown in media containing five different salt concentrations (0.17, 1, 2, 3, and 4 M NaCl) were evaluated under sterile conditions. Algae growth decreased as the medium salinity increased. Optimum growth of D. salina and D. viridis were obtained at 2 and 1 M NaCl, respectively. As salinity increased, glycerol and carotenoid production were increased in D. salina, whereas lower values for these products were produced in D. viridis under the same conditions. Furthermore, the cell color of D. salina changed from green to orange-red following accumulation of carotenoid, but the color of D. viridis was not changed. Thereby, it seems that the Iranian D. salina may be suitable for carotenoid production (betacarotene) on a large scale. In addition, since carotenoid compounds enhance the efficiency of photosynthesis and glycerol synthesis, it appears that the pathway for glycerol production and mechanisms of salt tolerance in D. viridis are unique from those of D. salina.  相似文献   

4.
A partial complementary DNA (cDNA) (DSA8) for a P-type ATPase was obtained from the halotolerant alga Dunaliella salina (Dunal) Teod. (Chlorophyceae). The cDNA exhibited greater than 90% homology to the cDNA for a H+-ATPase in D. bioculata Butcher. The expression of the gene that corresponded to DSA8 was decreased strongly by increases in NaCl concentration. The expression of a gene that corresponded to another ATPase (DSA1; possibly for a Ca2+-ATPase) from D. salina did not show the same decrease as did the DSA8. However, increased osmotic pressure due to glycerol resulted in the same decrease in the DSA8 gene. Under salt or osmotic stress, the activity of a H+-ATPase from microsomes of this alga also decreased. We suggest that expression of the gene for the plasma membrane H+-ATPase of D. salina is regulated by osmotic pressure rather than by the concentration of NaCl.  相似文献   

5.
Whole thallus absorptance spectra were recorded for Porphyra abbottae Krishnamurthy gametophytes grown in batch culture at combinations of temperature (8, 10, 12° C), irradiance (17.5, 70, 140 μmol photons·m?2·s?1), nutrients (f/4, f/2, f media) and water motion (0, 50, 100, 150 rpm). Light, nutrients, water motion and the interaction of nutrients with water motion all significance affected broadband (400-700 nm) absorptance and absorptance by phycoerythrin (566 nm), phycocyanin (624 nm) and chlorophyll a (680 nm). Absorptances increased in low light, low water motion and high nutrient levels. Shifts in phycoerythrin: chlorophyll a absorptance ratios closely paralleled changes of absorptance by the major pigments, whereas the phycoerythrin: phycocyanin ratio decreased only with increasing nutrient supply Absorptance ratios were significantly correlated with growth rate. Absorptance increased asymptotically with blade thickness or pigment content. Based on previously determined growth rates, nutrient saturated P. abbottae can synthesize photosynthetic pigments in excess of immediate needs. Allocation is given preferentially to the phycobiliproteins, with highest preference for phycocyanin.  相似文献   

6.
Dunaliella bardawil Ben-Amotz & Avron, but not most other Dunaliella species, has a unique property of being able to accumulate, in addition to glycerol, large amounts of β-carotene when cultivated under appropriate conditions. These include high light intensity, a high sodium chloride concentration, nitrate deficiency and extreme temperatures. Under conditions of maximal carotene accumulation D. bardawil contains at least 8% of its dry weight as β-carotene while D. salina grown under similar conditions contains only about 0.3%. Electron micrographs of D. bardawil grown under conditions of high β-carotene accumulation show many β-carotene containing globules located in the interthylakoid spaces of the chloroplast. The same algae grown under conditions where β-carotene does not accumulate, contain few to no β-carotene globules. The β-carotene-rich globules were released from the algae into an aqueous medium by a two-stage osmotic shock technique and further purified by centrifugal ion on 10% sucrose. The isolated purified globules were shown by electron microscopy to be free of significant contamination and composed of membrane-free osmiophilic droplets with an average diameter of 150 nm. Reversed phase high performance liquid chromatography of a total pigment extract of the cells revealed the presence of β-carotene as the major pigment, together with chlorophylls a and b, α-carotene and the xanthophylls lutein, neoxauthin and zeaxanthin. β-Carotene accounted for essentially all the pigment in the purified globules. Analysis of the algal and globule β-carotene fractions by HPLC showed that the β-carotene was composed of approximately equal amounts of all-trans β-carotene and of its 9-cis isomer. Intact D. bardawil cells contained on a dry weight basis about 30% glycerol, 30% protein, 18% lipid, 11% carbohydrate, 9%β-carotene and 1% chlorophyll. The β-carotene globules were composed of practically only neutral lipids, more than half of which was β-carotene. It is suggested that the β-carotene globules may serve to protect D. bardawil against injury by the high intensity irradiation to which this alga is usually exposed in nature.  相似文献   

7.
The dependence of the catalytic properties of lactate dehydrogenase (LDH, EC 1.1.1.27) from a halophilic alga Dunaliella salina, a glycophilic alga Chlamydomonas reinhardtii, and from porcine muscle on glycerol concentration, medium pH, and temperature was investigated. Several chemical properties of the enzyme from D. salina differentiated it from the LDH preparation obtained from C. reinhardtii and any homologous enzymes of plant, animal, and bacterial origin. (1) V max of pyruvate reduction manifested low sensitivity to the major intracellular osmolyte, glycerol. (2) The affinity of LDH for its coenzyme NADH dropped in the physiological pH region of 6–8. Above pH 8, NADH virtually did not bind to LDH, while the enzyme affinity for pyruvate did not change considerably. (3) The enzyme thermostability was extremely low: LDH was completely inactivated at room temperature within 30 min. The optimum temperature for pyruvate reduction (32°C) was considerably lower than with the enzyme preparations from C. reinhardtii (52°C) and porcine muscle (61°C). (4) NADH greatly stabilized LDH: the ratio of LDH inactivation constants in the absence of the coenzyme and after NADH addition at the optimum temperature in the preparation from D. salina exceeded the corresponding indices of LDH preparations from C. reinhardtii twelve times and from porcine muscle eight times. The authors believe that these LDH properties match the specific metabolism of D. salina which is set at rapid glycerol synthesis under hyperosmotic stress conditions. The increase of cytoplasmic pH value produced in D. salina by the hyperosmotic shock can switch off the terminal reaction of the glycolytic pathway and thus provide for the most efficient utilization of NADH in the cycle of glycerol synthesis. As LDH is destabilized in the absence of NADH, this reaction is also switched off. In the course of alga adaptation to the hyperosmotic shock, glycerol accumulation and the neutralization of intracellular pH stabilize LDH, thus creating the conditions for restoring the complete glycolytic cycle.  相似文献   

8.
The effects of two kinds of molecules, Pb2+ and folic acid, on the formation of clathrin-coated pits and vesicles were studied in the unicellular green alga, Dunaliella salina Teod. Measurable amounts of algal clathrin were obtained in the postmicrosomal fraction from cells treated with folic acid. In contrast, algal clathrin heavy chains were below the detection limit in the postmicrosomal fraction from control and lead nitrate-treated cells. Consistent with the biochemical evidence, electron microscopy showed more clathrin-coated pits and vesicles in folic acid-treated cells compared to control cells or cells treated with lead nitrate alone. Observations of folic acid/lead nitrate-treated cells confirmed the endocytosis of Pb2+ through clathrin-coated pits and vesicles. As additional evidence for clathrin in the folic acid-stimulated cells of Dunaliella salina, clathrin was isolated and, for the first time in algae, the calcium-dependent reconstitution of clathrin cages was successfully obtained in vitro.  相似文献   

9.
The unicellular green alga Dunaliella salina Teod, is halophilic and wall-less. The cell acclimates to osmotic stresses by accumulation or degradation of glycerol. To investigate other mechanisms involved in its physiological recovery following hyperosmotic shocks, protein profiles from cells grown in various salinities were compared. A 13-kDa protein (P13) accumulated when cells were subjected to drastic hyperosmotic shock. Front our results with antibiotic-treated cells and purified chloroplasts, we believe that this component results from de novo translation in chloroplasts. The solubility of P13 was strongly promoted by Triton X-100. Its accumulation was correlated with the recovery of photosynthesis.  相似文献   

10.
Variations of pigment content in the microscopic conchocelis stage of four Alaskan Porphyra species were investigated in response to environmental variables. Conchocelis filaments were cultured under varying conditions of irradiance and nutrient concentrations for up to 60 d at 11°C and 30 psu salinity. Results indicate that conchocelis filaments contain relatively high concentrations of phycobilins under optimal culture conditions. Phycobilin pigment production was significantly affected by irradiance, nutrient concentration, and culture duration. For Porphyra abbottiae V. Krishnam., Porphyra sp., and Porphyra torta V. Krishnam., maximal phycoerythrin (63.2–95.1 mg · g dwt?1) and phycocyanin (28.8–64.8 mg · g dwt?1) content generally occurred at 10 μmol photons · m?2 · s?1, f/4–f/2 nutrient concentration after 10–20 d of culture. Whereas for Porphyra hiberna S. C. Lindstrom et K. M. Cole, the highest phycoerythrin (73.3 mg · g dwt?1) and phycocyanin (70.2 mg · g dwt?1) content occurred at 10 μmol photons · m?2 · s?1, f nutrient concentration after 60 d in culture. Under similar conditions, the different species showed significant differences in pigment content. P. abbottiae had higher phycoerythrin content than the other three species, and P. hiberna had the highest phycocyanin content. P. torta had the lowest phycobilin content.  相似文献   

11.
The cryptophyte Rhodomonas salina is widely used as feed for copepod cultures. However, culturing conditions to obtain high-quality algae have not yet been efficiently optimized. Therefore, we aimed to develop a cultivation protocol for R. salina to optimize its nutritional value and provide technical recommendations for later large-scale production in algal photobioreactors. We studied photosynthesis, growth, pigments, fatty acid (FA) and free amino acid (FAA) composition of R. salina cultured at different irradiances (10–300 μmol photons m?2 s?1) and nutrient availability (deficiency and excess). The optimal range of irradiance for photosynthesis and growth was 60–100 μmol photons m?2 s?1. The content of chlorophylls a and c decreased with increasing irradiance while phycoerythrin peaked at irradiances of 40–100 μmol photons m?2 s?1. The total FA content was maximal at optimal irradiances for growth, especially under nutrient deficiency. However, highly unsaturated fatty acids, desired components for copepods, were higher under nutrient excess. The total FAA content was highest at limiting irradiances (10–40 μmol photons m?2 s?1) but a better composition with a higher fraction of essential amino acids was obtained at saturated irradiances (60–140 μmol photons m?2 s?1). These results demonstrate that quality and quantity of FA and FAA of R. salina can be optimized by manipulating the irradiance and nutrient conditions. We suggest that R. salina should be cultivated in a range of irradiance 60–100 μmol photons m?2 s?1 and nutrient excess to obtain algae with high production and a balanced biochemical composition as feed for copepods.  相似文献   

12.
Ultrastructural and physiological responses of Prorocentrum mariae-lebouriae (Parke & Ballantine) Faust are reported for cultures maintained at growth irradiances (Ig) ranging from 20.6 to 0.3 E m?2.d?1 and following downward shifts in light intensity. We tested the hypothesis that Prorocentrum grown under light regimes that elicit different responses in photosynthesis and pigmentation exhibit distinctive cell ultrastructures. Prorocentrum from high-light conditions had high saturation intensities for photosynthesis (Ik) and low levels of Chl a, Chl c and peridinin-cell?1 These cultures were morphologically distinguished by a large starch volume fraction (Vv), small chloroplast Vv and fewer thylakoids lamella?1. Ik values were lower and pigment concentrations higher in low-light treatments, and cells showed reduced starch Vv, large chloroplast Vv, and higher numbers of thylakoids · lamella ?1. Cells grown under extremely low-light conditions appeared stressed as indicated by the absence of starch reserves and the presence of large vacuoles within the cytoplasm. Results for presence of large vacuoles within the cytoplasm. Results for quantiative electron microscopy, photosynthesis-irradiance (P-I) relations and cell pigmentation indicate that photoadaptation in P. mariae-lebouriae involves a strategy that encompasses changes in both the “size” and “number” of photosynthetic units.  相似文献   

13.
Glycerol diffusional permeabilities through the cytoplasmic cell membrane of Dunaliella salina, the cell envelope of pig erythrocyte and egg phosphattidylcholine vesicles were measured by NMR spectroscopy employing the spin-echo method and nuclear T1 relaxation. The following permeability coefficients (P) and corresponding enthalpies of activation (ΔH) were determined for glycerol at 25°C: for phosphatidylcholine vesicles 5·10−6 cm/s and 11±2 kcal/mol; for pig erythrocytes 7·10−8 cm/s and 18±3 kcal/mol, respectively; for the cytoplasmic membrane of D. salina the permeability at 17°C was found to be exceptionally low and only a lower limit (P<5·10−11cm/s) could be calculated. At temperatures above 50°C a change in membrane permeability occurred leading to rapid leakage of glycerol accompanied by cell death. The data reinforce the notion that the cytoplasmic membrane of Dunaliella represents a genuine anomaly in its exceptional low permeability to glycerol.  相似文献   

14.
The metabolic fate of photosynthetically-fixed CO2 was determined by labeling samples of Merismopedia tenuissima Lemmerman for 30 min with NaH14CO3 and analyzing its incorporation into low molecular weight compounds, polysaccharide and protein. In N- and P-sufficient cultures, relative incorporation into protein increased as the irradiance used during the labeling period was decreased to 20 μE · m-2 s-1. This pattern was found for cells grown at irradiances of either 20 or 180 μE · m-2· s-1, although incorporation into protein was greater in cultures grown at the higher irradiance. In N-limited continuous cultures, relative incorporation into protein was low, independent of growth rate, and the same for samples tested at 20 or 180 μE · m-2· s-1 irradiance. In contrast, 14C incorporation into protein by P-limited cultures increased as growth rate increased, and at relative growth rates greater than 0.25, the incorporation was greater at 20 than at 180 μE · m-2· s-1. However, the total RNA content and maximum photosynthetic rate of the cultures was the same at all growth rates tested. The interaction between nutrient concentration and light intensity was studied by growing-limited continuous cultures at the same dilution rate, but different irradiances. Relative incorporation into protein was highest in cultures grown at 20 μE · m-2· s-1, in which the relative growth rate was 0.4. These results suggest that photosynthetic carbon metabolism may respond to relative growth rate μ/μmax rather than to growth rate directly.  相似文献   

15.
16.
Activities of noncyclic and alternative pathways of photosynthetic electron transport were studied in intact leaves of broad been (Vicia faba L.) seedlings grown under white light at irradiances of 176, 36, and 18 µmol quanta/(m2 s). Electron flows were followed from light-induced absorbance changes at 830 nm related to redox transformations of P700, the photoactive PSI pigment. The largest absorbance changes at 830 nm, induced by either white or far-red light, were observed in leaves of seedlings grown at irradiance of 176 µmol quanta/(m2 s), which provides evidence for the highest concentration of PSI reaction centers per unit leaf area in these seedlings. When actinic white light of 1800 µmol quanta/(m2 s) was turned on, the P700 oxidation proceeded most rapidly in leaves of seedlings grown at irradiance of 176 µmol quanta/(m2 s). The rates of electron transfer from PSII to PSI were measured from the kinetics of dark P700+ reduction after turning off white light. These rates were similar in leaves of all light treatments studied, and their characteristic reaction times were found to range from 9.2 to 9.5 ms. Four exponentially decaying components were resolved in the kinetics of dark P700+ reduction after leaf exposure to far-red light. A minor but the fastest component of P700+ reduction with a halftime of 30–60 ms was determined by electron transfer from PSII, while the three other slow components were related to the operation of alternative electron transport pathways. Their halftimes and relative magnitudes were almost independent on irradiance during plant cultivation. It is concluded that irradiance during plant growth affects the absolute content of PSI reaction centers in leaves but did not influence the rates of noncyclic and alternative electron transport.From Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 485–491.Original English Text Copyright © 2005 by Nikolaeva, Bukhov, Egorova.The article was translated by the authors.  相似文献   

17.
Dunaliella tertiolecta Butcher was grown at two intensities (33, 150μEin · m?2· s?1) of blue light and white light at 0.25, 0.50 and 1.00 M NaCl. Growth rates were used as an indication of the relative osmoregulatory ability of cells in the various treatments. There was no significant effect on growth rate due to various NaCl molarities. No significant difference in growth rate was found between blue- and white-light cultures at the high intensity, the average growth constant being 2.07 divisions/day. However, at the low intensity illumination, blue light produced a significant increase in growth rate; 1.42 vs. 0.93 divisions/day for blue light and white light grown cells respectively. The average glycerol content of exponentially dividing cells grown at 0.25, 0.50 and 1.00 M NaCl was 0.12, 0.41 and 1.12 mg/108 cells, respectively, as measured by gas chromatography. The intracellular glycerol content was significantly reduced by blue light at both light intensities and at each NaCl molarity. However, high light intensity reduced cellular glycerol content more than the reduction effected by blue light. Glycerol accumulated in the medium throughout culture growth. Intracellular glycerol content also increased with cellular aging reaching 2.72 mg/108 cells in stationary phase, low intensity 1.00 M NaCl cultures. A negative correlation between glycerol content and growth rate was found. Total inhibition of glycerol production could not be obtained by treatment with blue light. However, this negative correlation possibly indicates that D. tertiolecta expends energy producing an excess amount of glycerol over that required for osmoregulation, leading to a reduction in the growth rate for the organism.  相似文献   

18.
Pentaclethra macroloba (Willd.) Kuntze (Mimosaceae) is a dominant late-successional tree species in the Atlantic lowland forests of Costa Rica. Leaves of P. macroloba from three heights in the forest canopy were compared with leaves of seedlings grown in controlled environment chambers under four different irradiance levels. Changes in leaf characteristics along the canopy gradient paralleled changes resulting from the light gradient under controlled conditions. The effect of light or canopy position on light-saturated photosynthesis was small, with maximum photosynthesis increasing from 5 to 6.5 μmol m−-2 s−-1 from understory to canopy. Both chamber grown and field leaves showed large adjustments in photosynthetic efficiency at low light via reductions in dark respiration rates and increases in apparent quantum yields. Light saturation of all leaves occurred at or below 500 μmol m−-2 s−-1. Leaf thickness, specific leaf weight, and stomatal density increased to a greater extent than saturated photosynthesis with higher irradiance during growth or height in the canopy. As a result, there was a poor correspondence between leaf thickness and light-saturated photosynthesis on an area basis. It is concluded that Pentaclethra macroloba possesses the characteristics of a typical shade-tolerant species.  相似文献   

19.
The influence of spectral quality on growth and pigmentation was compared among five strains of marine and freshwater picocyanobacteria grown under the same photon flux density (28 μE · m?2·s?1). Growth and phycoerythrin (PE) concentration per unit carbon increased when marine Synechococcus WH7803 was grown under green light as compared to red light, but no change in phycocyanin concentration occurred. Marine Synechococcus strain 48B66 also showed greater levels of PE when grown under green light than under red light, but no concomitant growth increase occurred. Both strains thus exhibited Group II chromatic adaptation. Additionally, strain 48B66 increased the relative level of phycourobilin compared to phycoerythrobilin when grown under red light. In contrast, both marine and freshwater Synechococcus strains containing no PE showed decreased growth under green light. Chlorophyll a concentrations were greatest or among the greatest in all strains grown under green light. These results suggest that light quality, through its effects on growth rate, may be an important factor controlling the distribution and abundance of the various pigment types of Synechococcus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号