首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In whole cell patch clamp recordings, we found that normal human adrenal zona fasciculata (AZF) cells express voltage-gated, rapidly inactivating Ca2+ and K+ currents and a noninactivating, leak-type K+ current. Characterization of these currents with respect to voltage-dependent gating and kinetic properties, pharmacology, and modulation by the peptide hormones adrenocorticotropic hormone (ACTH) and AngII, in conjunction with Northern blot analysis, identified these channels as Cav3.2 (encoded by CACNA1H), Kv1.4 (KCNA4), and TREK-1 (KCNK2). In particular, the low voltage–activated, rapidly inactivating and slowly deactivating Ca2+ current (Cav3.2) was potently blocked by Ni2+ with an IC50 of 3 µM. The voltage-gated, rapidly inactivating K+ current (Kv1.4) was robustly expressed in nearly every cell, with a current density of 95.0 ± 7.2 pA/pF (n = 64). The noninactivating, outwardly rectifying K+ current (TREK-1) grew to a stable maximum over a period of minutes when recording at a holding potential of −80 mV. This noninactivating K+ current was markedly activated by cinnamyl 1-3,4-dihydroxy-α-cyanocinnamate (CDC) and arachidonic acid (AA) and inhibited almost completely by forskolin, properties which are specific to TREK-1 among the K2P family of K+ channels. The activation of TREK-1 by AA and inhibition by forskolin were closely linked to membrane hyperpolarization and depolarization, respectively. ACTH and AngII selectively inhibited the noninactivating K+ current in human AZF cells at concentrations that stimulated cortisol secretion. Accordingly, mibefradil and CDC at concentrations that, respectively, blocked Cav3.2 and activated TREK-1, each inhibited both ACTH- and AngII-stimulated cortisol secretion. These results characterize the major Ca2+ and K+ channels expressed by normal human AZF cells and identify TREK-1 as the primary leak-type channel involved in establishing the membrane potential. These findings also suggest a model for cortisol secretion in human AZF cells wherein ACTH and AngII receptor activation is coupled to membrane depolarization and the activation of Cav3.2 channels through inhibition of hTREK-1.  相似文献   

2.
Nystatin perforated-patch clamp and single-channel recording methods were used to characterize macroscopic and single-channel K+ currents and the effects of angiotensin II (AngII) in cultured rat adrenal glomerulosa cells. Two basic patterns of macroscopic current-voltage relationships were observed: type 1 exhibited a rapidly activating, noninactivating, voltage-dependent outward current and type 2 exhibited an inactivating voltage-dependent outward current attributed to charybdotoxin sensitive Ca++-dependent K+ channels. Most cells exhibited the type 1 pattern and experiments focused on this cell type. Cell-attached and inside-out patches were dominated by a single K+ channel class which exhibited an outward conductance of 12 pS (20 mm K+ pipette in cell-attached and inside-out configurations, 145 mm K+ in), a mean open time of 2 msec, and a weakly voltage-dependent low open probability that increased with depolarization. Channel open probability was reversibly inhibited by bath stimulation with AngII. At the macroscopic level, type 1 cell macroscopic K+ currents appeared comprised of two components: a weakly voltage-dependent current controlling the resting membrane potential (−85 mV) which appeared mediated by the 12 pS K+ channel and a rapidly activating, noninactivating voltage-dependent current activated above −50 mV. The presence of the second voltage-dependent K+ channel class was suggested by the effects of AngII, the blocking effects of quinidine and Cs+, and the properties of the weakly voltage-dependent K+ channel described. The K+ selectivity of the macroscopic current was demonstrated by the dependence of current reversal potentials on the K+ equilibrium potential and by the effects of K+ channel blockers, Cs+ and quinidine. AngII (10 pm to 1 nm) reversibly inhibited macroscopic K+ currents and this effect was blocked by the AT1 receptor antagonist losartin. Received: 6 August 1996/Revised: 15 November 1996  相似文献   

3.
Using the voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In our study, we identified and studied a charibdotoxin-sensitive component of Ca2+-dependent K+ current carried through the channels of high conductance (in most publications called “big conductance,”I BK(Ca)). This component was completely blocked by 100 nM charibdotoxin and by tetraethylammonium in concentrations as low as 1 mM.I BK(Ca) demonstrated fast kinetics of inactivation, which nearly coincided with that of Ca2+ current. In addition to the dependence on Ca2+ concentration, this current also showed voltage-dependent properties: with a rise in the level of depolarization its amplitude increased. In many cells, depolarizing shifts in the membrane potential evoke spontaneous outward currents. Such currents probably represent the secondary effect of cyclic Ca2+ release from the caffeine-sensitive intracellular stores that result in short-term activation of charibdotoxin-sensitive Ca2+-dependent K+ channels.  相似文献   

4.
The aim of this work was to examine the effects of changes in external K+ concentration (K o ) around its physiological value, of various K+ channels blockers, including internal Cs+, of vacuolar H+-ATPase inhibitors and of the protonophore CCCP on the resting potential and the voltage-dependent K+ current of differentiated neuroblastoma x glioma hybrid NG108-15 cells using the whole-cell patch-clamp technique. The results are as follows: (i) under standard conditions (K o =5 mm) the membrane potential was –60±1 mV. It was unchanged when K o was decreased to 1 mm and was depolarized by 4±1 mV when Ko was increased to 10 mm. (ii) Internal Cs+ depolarized the membrane by 21±3 mV. (iii) The internal application of the vacuolar H+-ATPase inhibitors N-ethylmaleimide (NEM), NO 3 and bafilomycin A1 (BFA) depolarized the membrane by 15±2, 18±2 and 16±2 mV, respectively, (iv) When NEM or BFA were added to the internal medium containing Cs+, the membrane was depolarized by 45±1 and 42±2 mV, respectively. (v) The external application of CCCP induced a transient depolarization followed by a prolonged hyperpolarization. This hyperpolarization was absent in BFA-treated cells. The voltage-dependent K+ current was increased at negative voltages and decreased at positive voltages by NEM, BFA and CCCP. Taken together, these results suggest that under physiological conditions, the resting potential of NG108-15 neuroblastoma cells is maintained at negative values by both voltage-dependent K+ channels and an electrogenic vacuolar type H+-ATPase.This work was supported by a grant from INSERM (CRE 91 0906).  相似文献   

5.
K+ channels, membrane voltage, and intracellular free Ca2+ are involved in regulating proliferation in a human melanoma cell line (SK MEL 28). Using patch-clamp techniques, we found an inwardly rectifying K+ channel and a calcium-activated K+ channel. The inwardly rectifying K+ channel was calcium independent, insensitive to charybdotoxin, and carried the major part of the whole-cell current. The K+ channel blockers quinidine, tetraethylammonium chloride and Ba2+ and elevated extracellular K+ caused a dose-dependent membrane depolarization. This depolarization was correlated to an inhibition of cell proliferation. Charybdotoxin affected neither membrane voltage nor proliferation. Basic fibroblast growth factor and fetal calf serum induced a transient peak in intracellular Ca2+ followed by a long-lasting Ca2+ influx. Depolarization by voltage clamp decreased and hyperpolarization increased intracellular Ca2+, illustrating a transmembrane flux of Ca2+ following its electrochemical gradient. We conclude that K+ channel blockers inhibit cell-cycle progression by membrane depolarization. This in turn reduces the driving force for the influx of Ca2+, a messenger in the mitogenic signal cascade of human melanoma cells. Received: 9 May 1995/Revised: 30 January 1996  相似文献   

6.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

7.
Summary The tight-seal whole-cell recording method has been used to studyNecturus choroid plexus epithelium. A cell potential of –59±2 mV and a whole cell resistance of 56±6 M were measured using this technique. Application of depolarizing step potentials activated voltage-dependent outward currents that developed with time. For example, when the cell was bathed in 110mm NaCl Ringer solution and the interior of the cell contained a solution of 110mm KCl and 5nm Ca2+, stepping the membrane potential from a holding value of –50 to –10 mV evoked outward currents which, after a delay of greater than 50 msec, increased to a steady state in 500 msec. The voltage dependence of the delayed currents suggests that they may be currents through Ca2+-activated K_ channels. Based on the voltage dependence of the activation of Ca2+-activated K+ channels, we have devised a general method to isolate the delayed currents. The delayed currents were highly selective for K+ as their reversal potential at different K+ concentration gradients followed the Nernst potential for K+. These currents were reduced by the addition of TEA+ to the bath solution and were eliminated when Cs+ or Na+ replaced intracellular K+. Increasing the membrane potential to more positive values decreased both the delay and the half-times (t 1/2) to the steady value. Increasing the pipette Ca2+ also decreased the delay and decreasedt 1/2. For instance, when pipette Ca2+ was increased from 5 to 500nm, the delay andt 1/2 decreased from values greater than 50 and 150 msec to values less than 10 and 50 msec. We conclude that the delayed currents are K+ currents through Ca2+-activated K+ channels.At the resting membrane potential of –60 mV, Ca2+-activated K+ channels contribute between 13 to 25% of the total conductance of the cell. The contribution of these channels to cell conductance nearly doubles with membrane depolarization of 20–30 mV. Such depolarizations have been observed when cerebrospinal fluid (CSF) secretion is stimulated by cAMP and with intracellular Ca2+. Thus the Ca2+-activated K+ channels may play a specific role in maintaining intracellular K+ concentrations during CSF secretion.  相似文献   

8.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.  相似文献   

9.
The role of K+ as current carrier during the slow membrane hyperpolarizations (SH) elicited by iontophoretic Ca2+ injections into macrophage polykaryons is studied. The intracellular K+ activity (aK) and the K+ equilibrium potential (EK) are measured using ion-sensitive microelectrodes. The mean value of aK is 84 ± 5 mM in a culture medium containing 5.3 mM K+, but increases to 100 ± 8 mM when the extracellular K+ concentration is raised to 30.3 mM. Under the same conditions the values of EK obtained from the Nernst equation are −81 ± 2 mV and −40 ± 2 mV, respectively. The reversal potentials (ER) of the SH are calculated from changes observed in transmembrane potential and input resistance, according to an equivalent model based only on passive ionic fluxes. The mean ER values obtained are −74 ± 8 mV in the presence of low K+ concentration and −37 ± 3 mV for the high K+ medium. These values are significantly smaller than the estimated EK for the corresponding situations. Evidence for the existence of an electrogenic (Na+ + K+)-ATPase activity is also presented. The evidence indicates that an increase in the membrane potassium permeability can account for about 90% of the total permeability change occurring during the SH.  相似文献   

10.
Using Raman spectrometry and fluorescence microscopy, we studied the rearrangement of carotenoid molecules and membrane-bound Ca mb 2+ in myelinated nerve fibers after K+ depolarization, K+-channel blocking, and altering the membrane protein conformation. We observed a decrease in Ca mb 2+ and an increase of microviscosity in myelin after depolarization. Changes in Ca mb 2+ and microviscosity were registered after blocking the K+ channels and modifying proteins with PCMB. Our results suggest an interconnection between the condition of nerve fiber membrane proteins, Ca mb 2+ distribution, and myelin microviscosity.  相似文献   

11.
The effect of high K concentration, insulin and the L-type Ca2– channel blocker PN 200-110 on cytosolic intracellular free calcium ([Ca2+]i) was studied in single ventricular myocytes of 10-day-old embryonic chick heart, 20-week-old human fetus and rabbit aorta (VSM) single cells using the Ca2+-sensitive fluorescent dye, Fura-2 microfluorometry and digital imaging technique. Depolarization of the cell membrane of both heart and VSM cells with continuous superfusion of 30 mM [K+]o induced a rapid transient increase of [Ca2+]i that was followed by a sustained component. The early transient increase of [Ca2+]i by high [+]o was blocked by the L-type calcium channel antagonist nifedipine. However, the sustained component was found to be insensitive to this drug. PN 200-110 another L-type Ca2+ blocker was found to decrease both the early transient and the sustained increase of [Ca2+]i induced by depolarization of the cell membrane with high [K+]o. Insulin at a concentration of 40 to 80 U/ml only produced a sustained increase of [Ca2+]i that was blocked by PN 200-110 or by lowering the extracellular Ca2+ concentration with EGTA. The sustained increase of [Ca2+], induced by high [K+]o or insulin was insensitive to metabolic inhibitors such as KCN and ouabain as well to the fast Na+ channel blocker, tetrodotoxin and to the increase of intracellular concentrations of cyclic nucleotides. Using the patch clamp technique, insulin did not affect the L-type Ca2+ current and the delayed outward K+ current. These results suggest that the early increase of (Ca2+]i during depolarization of the cell membrane of heart and VSM cells with high [K+]o is due to the opening and decay of an L-type Ca 2+ channel. However, the sustained increase of [Ca2+]i during a sustained depolarization is due to the activation of a resting (R) Ca 2+ channel that is insensitive to lowering [ATP]i and sensitive to insulin.  相似文献   

12.
Summary The internodal cells of the characean algaNitellopsis obtusa were chosen to investigate the effect of gravity on cytoplasmic streaming. Horizontal cells exhibit streaming with equal velocities in both directions, whereas in vertically oriented cells, the downwardstreaming cytoplasm flows ca. 10% faster than the upward-streaming cytoplasm. These results are independent of the orientation of the morphological top and bottom of the cell. We define the ratio of the velocity of the downward- to the upward-streaming cytoplasm as the polar ratio (PR). The normal polarity of a cell can be reversed (PR<1) by treatment with neutral red (NR). The NR effect may be the result of membrane hyperpolarization, caused by the opening of K+ channels. The K+ channel blocker TEA Cl inhibits the NR effect.External Ca2+ is required for normal graviresponsivness. The [Ca2+] of the medium determines the polarity of cytoplasmic streaming. Less than 1 M Ca2+ resulted in a PR<1 while greater than 1 M Ca2+ resulted in the normal gravity response. The voltage-dependent Ca2+ -channel blocker, nifedipine, inhibited the gravity response in a reversible manner, while treatment with LaCl3 resulted in a PR<1, indicating the presence of two types of Ca2+ channels. A new model for graviperception is presented in which the whole cell acts as the gravity sensor, and the plasma membrane acts as the gravireceptor. This is supported by ligation and UV irradiation experiments which indicate that the membranes at both ends of the cell are required for graviperception. The density of the external medium also affects the PR ofNitellopsis. Calculations are presented that indicate that the weight of the protoplasm may provide enough potential energy to open ion channels.  相似文献   

13.
Summary Human red cells were prepared with various cellular Na+ and K+ concentrations at a constant sum of 156mm. At maximal activation of the K+ conductance,g K(Ca), the net efflux of K+ was determined as a function of the cellular Na+ and K+ concentrations and the membrane potential,V m , at a fixed [K+]ex of 3.5mm.V m was only varied from (V m E K)25 mV and upwards, that is, outside the range of potentials with a steep inward rectifying voltage dependence (Stampe & Vestergaard-Bogind, 1988).g K(Ca) as a function of cellular Na+ and K+ concentrations atV m =–40, 0 and 40 mV indicated a competitive, voltage-dependent block of the outward current conductance by cellular Na+. Since the present Ca2+-activated K+ channels have been shown to be of the multi-ion type, the experimental data from each set of Na+ and K+ concentrations were fitted separately to a Boltzmann-type equation, assuming that the outward current conductance in the absence of cellular Na+ is independent of voltage. The equivalent valence determined in this way was a function of the cellular Na+ concentration increasing from 0.5 to 1.5 as this concentration increased from 11 to 101mm. Data from a previous study of voltage dependence as a function of the degree of Ca2+ activation of the channel could be accounted for in this way as well. It is therefore suggested that the voltage dependence ofg K(Ca) for outward currents at (V m E K)>25 25 mV reflects a voltage-dependent Na+ block of the Ca2+-activated K+ channels.  相似文献   

14.
Summary The patch-clamp technique is used here to investigate the kinetics of Ca2+ block in single high-conductance Ca2+-activated K+ channels. These channels are detected in the membrane surounding cytoplasmic drops fromChara australis, a membrane which originates from the tonoplast of the parent cell. The amplitudes and durations of single channel events are measured over a wide range of membrane potential (–300 to 200 mV). Ca2+ on either side of the channel reduces its K+ conductance and alters its ion-gating characteristics in a voltage-dependent manner. This Ca2+-induced attenuation of conductance is analyzed using the theory of diffusion-limited ion flow through pores. Interaction of external Ca2+ with the channel's ion-gating mechanism is examined in terms of a kinetic model for ion-gating that includes two voltage-dependent gating mechanisms. The kinetics of channel block by external Ca2+ indicates that (i) external Ca2+ binds at two sites, a superficial site and a deep site, located at 8 and 40% along the trans-pore potential difference, (ii) the external vestibule cannot be occupied by more than one Ca2+ or K+, and (iii) the kinetics of Ca2+ binding at the deep site is coupled with that of a voltage-dependent gate on the external side of the channel. Kinetics of channel block by internal Ca2+ indicates that more than one Ca2+ is involved.  相似文献   

15.
In an attempt to understand the processes mediating ion transport within the root, the patch clamp technique was applied to protoplasts isolated from the cortex and stele of maize roots and their plasma membrane conductances investigated. In the whole-cell configuration, membrane hyperpolarization induced a slowly activating inwardly rectifying conductance in most protoplasts isolated from the root cortex. In contrast, most protoplasts isolated from the stele contained a slowly activating outwardly rectifying conductance upon plasma membrane depolarization. The reversal potential of the inward current indicated that it was primarily due to the movement of K+; the outwardly rectifying conductance was comparatively less selective for K+. Membrane hyperpolarization beyond a threshold of about ?70 mV induced inward currents. When EK was set negative of this threshold, inward currents activated negative of EK and no outward currents were observed positive of EK. Outward currents in the stelar protoplasts activated at potentials positive of ?85 mV. However, when EK was set positive of ?85 mV a small inward current was also observed at potentials negative (and slightly positive) of the equilibrium potential for K+. Inwardly and outwardly rectifying K+ channels were observed in outside-out patches from the plasma membrane of cortical and stelar cells, respectively. Characterization of these channels showed that they were likely to be responsible for the macroscopic ‘whole-cell’ currents. Inward and outward currents were affected differently by various K+ channel blockers (TEA+, Ba2+ and Cs+). In addition, Ca2+ above 1 mM partially blocked the inward current in a voltage-dependent manner but had little effect on the outward current. It is suggested that the inwardly rectifying conductance identified in protoplasts isolated from the cortex probably represents an important component of the low-affinity K+ uptake mechanism (mechanism II) identified in intact roots. The outwardly rectifying conductance identified in protoplasts isolated from the stele could play a role in the release of cations into the xylem vessels for transport to the shoot.  相似文献   

16.
The fluorescent dye chlorotetracycline was used to study the relationship between the light-induced decrease in cytosolic free calcium concentration, [Ca2+]c, and its effect on ion transport at the plasma membrane in the giant cells of Chara corallina Klein ex Willd. A kinetic analysis of the simultaneously measured light-induced changes in membrane potential and in [Ca2+]c led to the same time constant of about 40 s. The reversal potential of the light effect on membrane potential was in agreement with the dominant role of a K+ channel in the plasma membrane. Thus, the experiments reported here provide evidence for the following light-driven signal transduction chain from the chloroplasts to K+ transport of the plasma membrane: (i) light causes an uptake of Ca2+ into the chloroplasts, (ii) this causes a decrease in cytosolic [Ca2+]c, (iii) this leads to a decrease in the activity of a K+ channel. The results also initiated a re-analysis of previously published data of the light effect on the velocity of cytosolic streaming and supported the hypothesis that Ca2+ fluxes coming out of the chloroplasts upon darkening cause a Ca2+-induced phosphorylation of myosin, which slows down cytoplasmic streaming. Received: 3 May 1997 / Accepted: 19 May 1998  相似文献   

17.
18.
The effect of potential-dependent potassium uptake at 0–120 mM K+ on matrix Ca2+ accumulation in rat brain mitochondria was studied. An increase in oxygen consumption and proton extrusion rates as well as increase in matrix pH with increase in K+ content in the medium was observed due to K+ uptake into the mitochondria. The accumulation of Ca2+ was shown to depend on K+ concentration in the medium. At K+ concentration ?30 mM, Ca2+ uptake is decreased due to K+-induced membrane depolarization, whereas at higher K+ concentrations, up to 120 mM K+, Ca2+ uptake is increased in spite of membrane depolarization caused by matrix alkalization due to K+ uptake. Mitochondrial K ATP + -channel blockers (glibenclamide and 5-hydroxydecanoic acid) diminish K+ uptake as well as K+-induced depolarization and matrix alkalization, which results in attenuation of the potassium-induced effects on matrix Ca2+ uptake, i.e. increase in Ca2+ uptake at low K+ content in the medium due to the smaller membrane depolarization and decrease in Ca2+ uptake at high potassium concentrations because of restricted rise in matrix pH. The results show the importance of potential-dependent potassium uptake, and especially the K ATP + channel, in the regulation of calcium accumulation in rat brain mitochondria.  相似文献   

19.
Neurotransmitter receptors are formed during chick embryo development in the amnion, an avascular extraembryonic membrane devoid of innervation. Carbachol induces phasic and tonic contractions mediated by M3 cholinoceptors in an amniotic membrane strip isolated from 11–14-day-old chick embryo. The carbachol effect on the amnion contractile activity was studied in normal physiological salt solution, during depolarization by K+, exposure to nifedipine, and in calcium-free medium. Voltage-dependent and receptor-operated Ca2+ channels as well as calcium from intracellular stores are involved in the contractile response to carbachol. Phasic contractions of the amnion are mainly induced by calcium ions entering through voltage-dependent calcium channels, while tonic contractions are also maintained by receptor-operated channels. Ca2+-activated potassium channels can serve as a negative feedback factor in regulation of the amnion contractile responses.  相似文献   

20.
The effects of protein phosphatase inhibitors on steady-state K+ currents in the plasma membrane of Vicia faba guard cells were studied. Cells were impaled with double barrelled electrodes to monitor membrane voltage and K+ currents under voltage clamp. Okadaic acid (OA) (1 μM), a specific inhibitor of phosphatase 1 and 2A activity, blocks inward (lK+(in)) and outward (lK+(out)) rectifying K+ channels. Both currents decreased in parallel with a sigmoidal time course with 50% inhibition at about 8 min. With 0.2 μM OA inhibition became slower and more variable (4–34 min). Inhibition did not recover by washing cells ≤ 20 min in OA-free solution. In five out of seven cells OA also induced a rise in the background conductance, which lagged behind the inhibition of K+ current. Both decaying lK*(out) and rising leak conductance caused a depolarization. OA-induced inhibition of lK+(in) and lK+(out) was without a significant effect on the kinetics of voltage-dependent current activation and deactivation. In an alternative approach, guard cells were loaded from the voltage recording pipette with the non-specific phosphatase inhibitor naphthylphosphate. After an impalement of some minutes lK+(in) and lK+(out) were small or undetectable. In conclusion inward and outward K+ channels in guard cells have a common voltage-independent mode of control which is sensitive to phosphatase inhibitors. The known specificity of OA points to a mode of action in which a net increase of protein phosphorylation through inhibition of phosphatase 1 and/or 2A activity blocks conductance of both, lK+(in) and l(out)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号