首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between transferrin-free iron uptake and cellular metabolism was investigated using rabbit reticulocytes in which energy metabolism was altered by incubation with metabolic inhibitors (antimycin A, 2,4-dinitrophenol, NaCN, NaN3 and rotenone) or substrates. Measurements were made of cellular ATP concentration and the rate of uptake of Fe(II) from a sucrose solution buffered at pH 6.5. There was a highly significant correlation between the rate of iron uptake into cytosolic and stromal fractions of the cells and ATP levels. Iron transport into the cytosol showed saturation kinetics. The metabolic inhibitors all reduced the Vmax but had no effect on the Km values for this process. It is concluded that the uptake of transferrin-free iron by reticulocytes is dependent on the cellular concentration of ATP and that it crosses the cell membrane by an active, carrier-mediated transport process. Additional studies were performed using transferrin-bound iron. The metabolic inhibitors also reduced the uptake of this form of iron but the inhibition could be accounted for entirely by reduction in the rate of transferrin endocytosis.  相似文献   

2.
NK cell proliferation is suppressed in some patients with cancer by unknown mechanisms. Because purine metabolites released into the extracellular space during cell lysis may affect cell function, we hypothesized that these metabolites could serve as feedback regulators of NK cell proliferation. Sorted NK (CD56+/CD3-) cells were incubated with IL-2 (1000 U/ml) in a 4-day thymidine uptake assay with or without 10-10,000 microM of nucleotides. Adenine nucleotides inhibited NK cell proliferation, with ATP = ADP > 5'-adenylylimidodiphosphate > AMP = adenosine; ADP-ribose and nicotinamide adenine dinucleotide, but not nicotinamide or UTP, caused a dose-dependent suppression of thymidine uptake. A total of 100 microM ATP, a concentration that induced a maximal (80%) inhibition of thymidine uptake, did not inhibit cytotoxic activity against K562 targets. Because NK cells retained the ability to lyse K562 targets 4 days after exposure to 500 microM ATP or 1000 microM adenosine, inhibition of thymidine uptake was not due to cell death. Incubation of NK cells with dibutyryl cAMP and forskolin also suppressed thymidine uptake. Cholera toxin and pertussis toxin suppressed NK cell proliferation. Pertussis toxin did not block the adenine nucleotide effects. Further, ATP, but not adenosine or other nucleotides, markedly increased intracellular cAMP in a dose-dependent manner. The ATP-induced increase in cAMP was specific to cytolytic cells, because CD19+ B cells and CD4+ T cells did not increase their intracellular cAMP. These studies demonstrate that NK proliferation is regulated through purine receptors by adenine nucleotides, which may play a role in decreased NK cell activity. The response to adenine nucleotides is lineage-specific.  相似文献   

3.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

4.
The transport of ascorbate into cultured bovine retinal pigment epithelial (RPE) cells is reported. Primary or subcultured RPE cells were incubated in the presence of 10-500 microM L-[carboxyl-14C]-ascorbate for various periods of time. Accumulation of ascorbate into RPE cells followed a saturable active transport with a Km of 125 microM and a Vmax of 28 pmole/micrograms DNA/min. RPE intracellular water was calculated to be 0.8 pL/cell, and the transported cellular ascorbate concentration was 7.5 +/- 0.8 mM. Replacement of 150 mM NaCl in the incubation media with choline-Cl strongly inhibited (80 +/- 8%) ascorbate uptake into cultured RPE cells. Although the depletion of cellular ATP by 2,4-dinitrophenol and the inhibition of Na+-K+-ATPase by ouabain reduced ascorbate transport into RPE significantly, active transport of ascorbate was not entirely inhibited by these metabolic inhibitors. The ascorbate analogue, D-isoascorbate, competitively inhibited ascorbate transport into cultured RPE with a Ki of 12.5 mM. Cells grown in the presence of 5 to 50 mM alpha-D-glucose in the growth media did not differ in their ability to transport ascorbate. In contrast, the presence of alpha-D-glucose or its nonmetabolizable analogues, 3-0-methyl-glucose, alpha-methyl-glucose, and 2-deoxy-glucose, but not L-glucose or beta-D-fructose, in the incubation media inhibited ascorbate transport. myo-Inositol (10 or 20 mM) also inhibited ascorbate transport into RPE cells. The active uptake of ascorbate into cultured RPE cells was primarily coupled to the movement of sodium ion down its electrochemical gradient. A bifunctional, cotransport carrier possessing an ascorbate-binding site and a sodium-binding site may be involved in the ascorbate uptake system. The inhibition of ascorbate uptake by sugars appeared to be heterologous in nature, occurring between two distinct carrier systems, both of which were dependent on the sodium ions.  相似文献   

5.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Iron acquired by cells is delivered to mitochondria for metabolic processing via pathways comprising undefined chemical forms. In order to assess cytosolic factors that affect those iron delivery pathways, we relied on microscopy and flow-cytometry for monitoring iron traffic in: (a) K562 erythroleukemia cells labeled with fluorescent metal-sensors targeted to either cytosol or mitochondria and responsive to changes in labile iron and (b) permeabilized cells that retained metabolically active mitochondria accessible to test substrates. Iron supplied to intact cells as transferrin-Fe(III) or Fe(II)-salts evoked concurrent metal ingress to cytosol and mitochondria. With either supplementation modality, iron ingress into cytosol was mostly absorbed by preloaded chelators, but ingress into mitochondria was fully inhibited only by some chelators, indicating different cytosol-to-mitochondria delivery mechanisms. Iron ingress into cytosol or mitochondria were essentially unaffected by depletion of cytosolic iron ligands like glutathione or the hypothesized 2,5 dihydroxybenzoate (2,5-DHBA) siderophore/chaperone. These ligands also failed to affect mitochondrial iron ingress in permeabilized K562 cells suspended in cytosol-simulating medium. In such medium, mitochondrial iron uptake was >6-eightfold higher for Fe(II) versus Fe(III), showed saturable properties and submicromolar K(1/2) corresponding to cytosolic labile iron levels. When measured in iron(II)-containing media, ligands like AMP, ADP or ATP, did not affect mitochondrial iron uptake whereas in iron(III)-containing media ADP and ATP reduced it and AMP stimulated it. Thus, cytosolic iron forms demonstrably contribute to mitochondrial iron delivery, are apparently not associated with DHBA analogs or glutathione but rather with resident components of the cytosolic labile iron pool.  相似文献   

7.
The inducible glutamate uptake system in Corynebacterium glutamicum (Kr?mer, R., Lambert, C., Hoischen, C. & Ebbighausen, H., preceding paper in this journal) was characterized with respect to its mechanism and energy coupling. All possible secondary active uptake mechanisms can be excluded. Glutamate transport is not coupled to the translocation of H+, Na+ or K+ ions. Although changes in membrane potential and uptake activity cannot completely be separated, no correlation between these two parameters is observed. The uptake of glutamate resembles a primary active, ATP-dependent transport mechanism in several respects. (a) The substrate affinity is very high (1.3 microM). (b) Accumulation of glutamate reaches values of greater than 2.10(5), at least as high as those reported for binding-protein-dependent systems in Gram-negative bacteria. (c) The uptake is unidirectional. Even after complete deenergization, the accumulation ratio was not significantly reduced. (d) The rate of glutamate uptake is directly correlated to the cytosolic ATP content and also to the ATP/ADP ratio. This is shown by varying internal ATP by different procedures applying inhibitors (NaCN, dicyclohexyl carbodiimide), uncouplers (carbonyl m-chlorophenylhydrazone), ionophores (valinomycin), and even by shifting the cells to anaerobiosis. Uptake is not promoted by cytosolic ATP levels below 1.5 mM, the maximum uptake rate is reached at 4-5 mM ATP.  相似文献   

8.
Gastric vesicles enriched in (H+,K+)-ATPase were prepared from hog fundic mucosa and studied for their ability to transport K+ using 86Rb+ as tracer. In the absence of ATP, the vesicles elicited a rapid uptake of 86Rb+ (t 1/2 = 45 +/- 9 s at 30 degrees C) which accounted for both transport and binding. Transport was osmotically sensitive and was the fastest phase. It was not limited by anion permeability (C1- was equivalent to SO2-4) but rather by availability of either H+ or K+ as intravesicular countercation suggesting a Rb+-K+ or a Rb+-H+ exchange. Selectivity was K+ greater than Rb+ greater than Cs+ much greater than Na+,Li+. The capacity of vesicles which catalyzed the fast transport of K+ was 83 +/- 4% of maximal vesicular capacity of the fraction. Addition of ATP decreased both rate and extent of 86Rb+ uptake (by 62 and 43%, respectively with 1 mM ATP) with an apparent Ki of 30 microM. Such an effect was not seen on 22Na+ transport. ATP inhibition of transport did not require the presence of Mg2+, and inhibition was also produced by ADP even in the presence of myokinase inhibitor. On the other hand, 86Rb+ uptake was as strongly inhibited by 200 microM vanadate in the presence of Mg2+. Efflux studies suggested that ATP inhibition was originally due to a decrease of vesicular influx with little or no modification of efflux. Since ATP, ADP, and vanadate are known modulators of the (H+,K+)-ATPase, we propose that, in the absence of ATP, (H+,K+)-ATPase passively exchanges K+ for K+ or H+ and that ATP, ADP, and vanadate regulate this exchange.  相似文献   

9.
Calcium has been suggested to be the final common mediator of cell damage, but conflicting reports to prove this hypothesis have appeared. In order to elucidate the role of calcium in cell damage caused by ATP depletion, the effect of addition of calcium channel blockers (verapamil and nitrendipine) and non-specific antagonists (magnesium and nickel) was investigated in a model system of quiescent fibroblasts. ATP depletion was induced by metabolic inhibitors and the cell damage was assessed by the release of lactate dehydrogenase. Verapamil and nitrendipine did not protect the cells during ATP depletion, whereas a high concentration of Mg2+ (3-10 mmol/l) or a lower concentration of Ni2+ (0.5-1.0 mmol/l) reduced the cell damage considerably. An increased extracellular concentration of Ca2+ resulted in augmented cell damage. The effect of Mg2+ and Ni2+ was not due to an interference with the metabolic inhibitors or a reduction of the energy consumption. Both Ni2+ and Mg2+ were able to counteract the cell damage induced by entrance of Ca2+ after addition of the ionophore A23187. However, Mg2+ and Ni2+ were deleterious for the cells during ATP regeneration after an initial ATP decrease. These results indicate that a non-specific antagonism of Ca2+ may reduce cell damage, and, therefore, that Ca2+ may have an important role in cell damage, but also that a non-specific antagonism of Ca2+ during regeneration of ATP depleted cells is deleterious.  相似文献   

10.
The K+-insensitive component of Mg2+ influx in primary culture of ruminal epithelial cells (REC) was examined by means of fluorescence techniques. The effects of extracellular anions, ruminal fermentation products, and transport inhibitors on the intracellular free Mg2+ concentration ([Mg2+]i), Mg2+ uptake, and intracellular pH were determined. Under control conditions (HEPES-buffered high-NaCl medium), the [Mg2+]i of REC increased from 0.56 +/- 0.14 to 0.76 +/- 0.06 mM, corresponding to a Mg2+ uptake rate of 15 microM/min. Exposure to butyrate did not affect Mg2+ uptake, but it was stimulated (by 84 +/- 19%) in the presence of CO2/HCO(-)3. In contrast, Mg2+ uptake was strongly diminished if REC were suspended in HCO(-)3-buffered high-KCl medium (22.3 +/- 4 microM/min) rather than in HEPES-buffered KCl medium (37.5 +/- 6 microM/min). After switching from high- to low-Cl- solution, [Mg2+]i was reduced from 0.64 +/- 0.09 to 0.32 +/- 0.16 mM and the CO2/HCO(-)3-stimulated Mg2+ uptake was completely inhibited. Bumetanide and furosemide blocked the rate of Mg2+ uptake by 64 and 40%, respectively. Specific blockers of vacuolar H+-ATPase reduced the [Mg2+]i (36%) and Mg2+ influx (38%) into REC. We interpret this data to mean that the K+-insensitive Mg2+ influx into REC is mediated by a cotransport of Mg2+ and Cl- and is energized by an H+-ATPase. The stimulation of Mg2+ transport by ruminal fermentation products may result from a modulation of the H+-ATPase activity.  相似文献   

11.
Membrane potential dependence of Fe(III) uptake by mouse duodenum   总被引:1,自引:0,他引:1  
Intestinal iron uptake by mouse duodenal fragments is inhibited in the absence of oxygen and glucose from the incubation medium and by a variety of metabolic inhibitors. The mechanism of energy coupling to iron uptake is, however, unclear. In vitro experiments using duodenal fragments showed Fe3+ uptake to be markedly inhibited, in a reversible fashion, by the replacement of incubation medium Na+ by K+. Addition of phloridzin to the medium failed to affect iron uptake, suggesting that the above effect was not a consequence of reduced glucose uptake. Substitution of Na+ by Rb+ also potently reduced duodenal iron uptake. Replacement of medium NaCl by either mannitol or choline chloride had no significant effect on Fe3+ uptake, thus excluding the possibility of the Fe3+ uptake process being Na+-dependent. Similar observations were made with duodenal fragments from animals with enhanced Fe3+ absorption, due to chronic hypoxia. Valinomycin (1-5 microM) increased the uptake of both glucose and Fe3+. Higher concentrations (22.5 microM) of the ionophore were inhibitory. In vivo studies (tied-off segments) using Rb+-containing medium confirmed the inhibitory effects of univalent cations on Fe3+ absorption. Enhanced absorption of Fe3+ was also demonstrable in vivo, with low concentrations of valinomycin and nigericin added to the luminal medium. These observations suggest that the Fe3+ uptake process may be dependent on the brush-border membrane potential.  相似文献   

12.
Various physiological and biochemical process like growth, NO3- -uptake, nitrate reductase, glutamine synthetase and ATPases (Mg2+ and Ca2+ dependent) in the cyanobacterium Anabaena 7120 were observed under iron stress. Growth was found to be maximum in 50 microM Fe3+ added cells however, 20 microM Fe3+ (the Fe3+ concentration generally used for routine culturing of cyanobacterial cell in Chu 10 medium) incubation resulted in lower growth. Fe3+ starvation on the other hand showed very poor growth up to 4th day but once the growth started it reached at significant level on 7th day. Higher Fe3+ concentration reflected reduced growth with lethality at 500 microM Fe3+. Chlorophyll a fluorescence under Fe3+ stress reflected almost the similar results as in case of growth. However, the pigment was found to be more sensitive as compared to protein under Fe3+ stress. Similar results have been observed in case of NO3-uptake with only 80% reduction in nutrient uptake in 500 microM Fe3+ incubated cells. Nitrate reductase activity was lower in Fe3+ starved cells as compared to significant enzyme activity in 20 and 50 microM Fe3+ incubated cells. Similar to nitrate reductase, glutamine synthetase also showed maximum level in 50 microM Fe3+ added cells, however, higher Fe3+ concentration (300-500 microM ) resulted in reduced enzymatic activity. Glutamine synthetase activity was less sensitivity as compared to nitrate reductase activity under Fe3+ stress. ATPase (Mg2+ and Ca2+ dependent) always showed higher level with increasing Fe3+ concentration.  相似文献   

13.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

14.
To study the mechanism of active drug efflux in multidrug-resistant cells, the interaction between [3H] vincristine (VCR) and plasma membrane prepared from an adriamycin (ADM)-resistant variant (K562/ADM) of human myelogenous leukemia K562 cells was examined by filtration method. [3H]VCR bound to the plasma membrane prepared from K562/ADM cells, but not from parental K562 cells, depending on the concentrations of ATP and Mg2+. Adenosine 5'-O-(3-thio)triphosphate was not effective in the binding of [3H]VCR, indicating that ATP hydrolysis is required for this binding. Dissociation constant (Kd) of VCR binding was 0.24 +/- 0.04 microM in the presence of 3 mM ATP. In the absence of ATP, specific binding of VCR to K562/ADM membrane was also observed; however, the affinity (Kd = 9.7 +/- 3.1 microM) was 40 times lower than that observed in the presence of ATP. The high affinity VCR binding to K562/ADM membrane was dependent on temperature. The bound [3H]VCR molecules were rapidly released by unlabeled VCR added to the reaction mixture at 25 degrees C. The high affinity binding of [3H]VCR to K562/ADM membrane was inhibited by VCR, vinblastine, actinomycin D, and ADM, to which K562/ADM cells exhibit cross-resistance, whereas 5-fluorouracil and camptothecin, to which K562/ADM cells are equally sensitive as K562 cells, did not inhibit the [3H]VCR binding. Furthermore, verapamil and other agents, which are known to circumvent drug resistance by inhibiting the active efflux of antitumor agents from resistant cells, could also inhibit the high affinity [3H]VCR binding. These results indicate that ATP/Mg2+-dependent high affinity VCR binding to the membrane of resistant cells closely correlates with the active drug efflux of this resistant cell line.  相似文献   

15.
ATP-dependent Ca2+ uptake was investigated at low Ca2+ concentrations (10 microM) in rat retinal synaptosomal and mitochondrial preparations obtained by differential centrifugation on Ficoll gradients. Ca2+ uptake in the synaptosomal and mitochondrial subcellular preparations was stimulated by ATP and additionally stimulated by ATP plus taurine. The ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptakes were inhibited by mitochondrial metabolic inhibitors (atractyloside, oligomycin, and ruthenium red). These metabolic inhibitors had a greater effect on the ATP-dependent and taurine-stimulated ATP-dependent Ca2+ uptake activities in the mitochondrial preparation than in the synaptosomal preparation. ATP-dependent Ca2+ uptake in a synaptosomal subfraction obtained by osmotic shock was only partially inhibited by atractyloside. ATP-dependent Ca2+ uptake in the synaptosomal subfraction was also stimulated by taurine but to a lesser extent than in either the synaptosomal or mitochondrial preparation. These studies suggest that mitochondria are primarily responsible for taurine-stimulated ATP-dependent Ca2+ uptake in synaptosomal preparations.  相似文献   

16.
We have characterized ATP-dependent Ca2+ transport into highly purified plasma membrane fraction isolated from guinea pig ileum smooth muscle. The membrane fraction contained inside-out sealed vesicles and was enriched 30-40-fold in 5'-nucleotidase and phosphodiesterase I activity as compared to post nuclear supernatant. Plasma membrane vesicles showed high rate (76 nmol/mg/min) and high capacity for ATP dependent Ca2+ transport which was inhibited by addition of Ca2+ ionophore A23187. The inhibitors of mitochondrial Ca2+ transport, i.e., sodium azide, oligomycin and ruthenium red did not inhibit ATP-dependent Ca2+ uptake into plasma membrane vesicles. The energy dependent Ca2+ uptake into plasma membranes showed very high specificity for ATP as energy source and other nucleotide triphosphates were ineffective in supporting Ca2+ transport. Phosphate was significantly better as Ca2+ trapping anion to potentiate ATP-dependent Ca2+ uptake into plasma membrane fraction as compared to oxalate. Orthovanadate, an inhibitor of cell membrane (Ca2+-Mg2+)-ATPase activity, completely inhibited ATP-dependent Ca2+ transport and the Ki was approximately 0.6 microM. ATP-dependent Ca2+ transport and formation of alkali labile phosphorylated intermediate of (Ca2+-Mg2+)-ATPase increased with increasing concentrations of free Ca2+ in the incubation mixture and the Km value for Ca2+ was approximately 0.6-0.7 microM for both the reactions.  相似文献   

17.
The crustacean hepatopancreas is an epithelial-lined, multifunctional organ that, among other activities, regulates the flow of calcium into and out of the animal's body throughout the life cycle. Transepithelial calcium flow across this epithelial cell layer occurs by the combination of calcium channels and cation exchangers at the apical pole of the cell and by an ATP-dependent, calcium ATPase in conjunction with a calcium channel and an Na+/Ca2+ antiporter in the basolateral cell region. The roles of intracellular organelles such as mitochondria, lysosomes, and endoplasmic reticulum (ER) in transepithelial calcium transport or in transient calcium sequestration are unclear, but may be involved in transferring cytosolic calcium from one cell pole to the other. The ER membrane has a complement of ATP-dependent calcium ATPases (SERCA) and calcium channels that regulate the uptake and possible transfer of calcium through this organelle during periods of intense calcium fluxes across the epithelium as a whole. This investigation characterized the mechanisms of calcium transport by lobster hepatopancreatic ER vesicles and the effects of drugs and heavy metals on them. Kinetic constants for 45Ca2+ influx under control conditions were K(n) (m)=10.38+/-1.01 microM, J(max)=14.75+/-1.27 pmol/mg protein x sec, and n=2.53+/-0.46. The Hill coefficient for 45Ca2+ influx under control conditions, approximating 2, suggests that approximately two calcium ions were transported for each transport cycle in the absence of ATP or the inhibitors. Addition of 1 mM ATP to the incubation medium significantly (P<0.01) elevated the rate of 45Ca2+ influx at all calcium activities used and retained the sigmoidal nature of the transport relationship. The kinetic constants for 45Ca2+ influx in the presence of 1 mM ATP were K(n) (m)=12.76+/-0.91 microM, J(max)=25.46+/-1.45 pmol/mg protein x sec, and n=1.95+/-0.15. Kinetic analyses of ER 65Zn2+ influx resulted in a sigmoidal relationship between transport rate and zinc activity under control conditions (K(n) (m)=38.63+/-0.52 microM, J(max)=19.35+/-0.17 pmol/mg protein x sec, n=1.81+/-0.03). The Addition of 1 mM ATP enhanced 65Zn2+ influx at each zinc activity, but maintained the overall sigmoidal nature of the kinetic relationship. The kinetic constants for zinc influx in the presence of 1 mM ATP were K(n) (m)=34.59+/-2.31 microM, J(max)=26.09+/-1.17 pmol/mg protein x sec, and n=1.96+/-0.17. Both sigmoidal and ATP-dependent calcium and zinc influxes by ER vesicles were reduced in the presence of thapsigargin and vanadate. This investigation found that lobster hepatopancreatic ER exhibited a thapsigargin- and vanadate-inhibited, SERCA-like, calcium ATPase. This transporter displayed cooperative calcium transport kinetics (Hill coefficient, n approximately 2.0) and was inhibited by the heavy metals zinc and copper, suggesting that the metals may reduce the binding and transport of calcium when they are present in the cytosol.  相似文献   

18.
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion.  相似文献   

19.
Plasma-membrane vesicles from rat corpus luteum showed an ATP-dependent uptake of Ca2+. Ca2+ was accumulated with a K1/2 (concn. giving half-maximal activity) of 0.2 microM and was released by the bivalent-cation ionophore A23187. A Ca2+-dependent phosphorylated intermediate (Mr 100,000) was detected which showed a low decomposition rate, consistent with it being the phosphorylated intermediate of the transport ATPase responsible for Ca2+ uptake. The Ca2+ uptake and the phosphorylated intermediate (E approximately P) displayed several properties that were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes. Both Ca2+ uptake and E approximately P discriminated against ribonucleoside triphosphates other than ATP, whereas the ATPase split all the ribonucleoside triphosphates equally. Both Ca2+ uptake and E approximately P were sensitive to three different Hg-containing inhibitors, whereas the ATPase was inhibited much less. Ca2+ uptake required added Mg2+ (Km = 2.2 mM), whereas the ATPase required no added Mg2+. The maximum rate of Ca2+ uptake was about 400-fold less than that of ATP splitting; under different conditions, the decomposition rate of E approximately P was 1,000 times too slow to account for the ATPase activity observed. All of these features suggested that Ca2+ uptake was due to an enzyme of low activity, whose ATPase activity was not detected in the presence of the higher-specific-activity Ca2+-dependent ATPase.  相似文献   

20.
Since we had shown recently that fatty acyl-CoA derivatives stimulate (Na+ + K+)-ATPase activity at suboptimal ATP concentrations, we used sealed vesicles of beef heart sarcolemma to examine the effects of these compounds on the transport function of the enzyme. The sodium pump was detected in inside-out vesicles as a component of Na+ uptake that was dependent on intravesicular (extracellular) K+ and extravesicular (intracellular) ATP and was sensitive to vanadate and digitoxigenin. The pump flux was stimulated without a lag by palmitoyl-CoA (K0.5 = 3 microM) when ATP concentration was 50 microM, but not when it was 2 mM. Saturating palmitoyl-CoA reduced the K0.5 of ATP for the pump by a factor of 3-6. Raising the intracellular K+ concentration increased the K0.5 of ATP, and this effect of K+ was antagonized by palmitoyl-CoA. At concentrations up to 0.5 mM, palmitoyl-CoA had no effect on ATP-independent (passive) Na+ uptake. All tested long-chain acyl-CoA derivatives had effects similar to that of palmitoyl-CoA; but CoA, acetyl-CoA, and palmitic acid were ineffective. Palmitoyl carnitine and docosahexanoic acid, amphiphilic compounds with inhibitory and biphasic effects on the hydrolytic activity of purified (Na+ + K+)-ATPase, had purely inhibitory effects on the pump at high concentrations that also affected the passive fluxes. The data support the proposition that fatty acyl-CoA derivatives mimic the effect of ATP at a regulatory site and suggest that these intracellular liponucleotides may be involved in the control of the pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号