首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An experimental system was developed to produce root cultures of Hyoscyamus muticus with and without the profuse root hairs. Growth in the presence of 7.6 microM pyrene butyric acid (PBA) and 2.2 mM phosphate virtually eliminated root hairs, whereas growth rate, general morphology and nutrient yields remained unchanged in well-mixed flask culture. These root cultures were used to demonstrate decreased flow resistance in a tubular reactor as a result of root hair removal. To assess the impact on bioreactor performance, hairy and hairless root cultures were grown in a highly characterized 15-L bubble column bioreactor. In the absence of root hairs, the mixing was greatly enhanced; mixing times became shorter for the hairless culture at roughly 100 g (fresh weight)/L. By the end of the 3-week culture period, the mixing time of the hairy culture was 29 times longer than that of the hairless culture. The growth rate of the hairless culture in the bioreactor was as much as 2.4 times greater than growth of the hairy culture under the same conditions. The improved reactor performance was reflected in greater biomass accumulation and respiratory activity. These results show that the root hairs-which facilitate nutrient uptake in a static soil environment-are detrimental to growth in a liquid environment as an effect of their stagnating fluid flow and limiting oxygen availability.  相似文献   

3.
Summary The efficient exchange of gases between roots and their environment is one of the biggest challenges in bioreactor design for transformed root cultures. Gas-phase reactors can alleviate this problem as well as provide a new tool for studying the biological response of roots and other differentiated tissues to changes in the gas phase composition. In our comparison of liquid- and gas-phase reactors, roots grown in liquid (shake flasks or bubble column reactors) are shown to be under hypoxic stress. Roots grown in a gas-phase reactor (nutrient mist), while not hypoxic, produced 50% less biomass. These results suggest that the response of the tissues to gas phase composition are complex and need further study.  相似文献   

4.
Summary A transformed root culture of Cichorium intybus L. cv. Lucknow Local grown in different configurations of bioreactors was examined. The roots grown in an acoustic mist bioreactor showed the best performance in terms of increased specific growth rate (0.072d−1) and esculin content (18.5gl−1), the latter of which was comparable to that of shake flask data. C. intybus hairy root cultures grown in an acoustic mist bioreactor produced nearly twice as much esculin as compared to roots grown in bubble column and nutrient sprinkle bioreactors. Studies relating to on-line estimation of conductivity and osmolarity to predict the growth of hairy root cultures are also discussed. The results demonstrate the efficacy and the advantages of an acoustic mist bioreactor for the cultivation of hairy root cultures, especially with reference to C. intybus hairy roots.  相似文献   

5.
Low cost mist bioreactors were designed to grow Artemisia annua transformed roots and Dianthus caryophyllus shoots. The reactors use similar mist generators but the culture chambers were modified to meet the requirements of each application. For root cultures grown in the mist reactor, the ratio of the final to initial fresh weight was 7.4 after 24 days while for the shoots, the ratio was 10.8 after 14 days. Shoots grown in the mist had about half the hyperhydration of the controls grown in culture tubes.  相似文献   

6.
The transient growth of Artemisia annua hairy roots was compared for cultures grown in shake flasks and in bubble column and mist reactors. Instantaneous growth rates were obtained by numerically differentiating the transient biomass measurements. Specific sugar consumption rates showed good agreement with literature values. From the growth rate and sugar consumption rate, the specific yield and maintenance coefficient for sugar were determined for all three culture systems. These values were statistically indistinguishable for roots grown in shake flasks and bubble columns. In contrast, the values for roots grown in bubble columns and mist reactors were statistically different, suggesting that sugar utilization by roots grown in these two systems may be different. By measuring respiration rates in the bubble column reactor we also determined the actual biomass yield and maintenance coefficient for O(2) and CO(2). Together with an elemental analysis of the roots, this allowed us to obtain a reasonable carbon balance.  相似文献   

7.
Hairy root cultures of Beta vulgaris L grown in a bubble column reactor were permeabilised by exposure to B5 medium of pH 2.0. The roots released 39% of their total pigments on a 10 min exposure to B5 medium of pH 2.0 followed by return to standard 135 medium. The pigments released in the extracellular medium were recovered on an adsorption column containing XAD-16 resin. The permeabilised roots regrew and accumulated additional pigments. Comparison of this technique with the previously used techniques like oxygen starvation and temperature shock to permeabilise beet hairy roots suggest that pH mediated release of betalains can be an effective method of releasing betalains from root cultures.  相似文献   

8.
Artemisia annua hairy roots were grown in liquid-phase bubble column and gas-phase nutrient mist reactors. In most cases the bubble column reactor accumulated more biomass than the mist reactor; the highest final biomass concentrations observed were 15.3 g DW/L in the bubble column reactor and 14.4 g DW/L in the mist reactor. Further analysis showed that the average specific growth rate in the mist reactors was essentially constant and independent of the biomass concentration at the beginning of the mist mode. In contrast, at low packing densities the average growth rate in the bubble column reactors was higher than in the mist reactors, decreasing to comparable rates at high packing densities. Finally, an aerosol deposition model was used to compare the volume of medium captured by the root bed in the mist reactor to the volume of medium required to maintain a specified growth rate. The results suggest that under the current operating conditions, lower growth rates in the mist reactor may be due to insufficient nutrient availability.  相似文献   

9.
Beet hairy root cultures established from red and yellow varieties were grown in a 2 L bubble column reactor. The yellow clone showed profuse root hairs and a predominance of betaxanthin pigment with the red clone showed fewer root hairs and both betaxanthin and betacyanin pigments. The cultures displayed different ionic and sugar yields: 2.1 mg dry wt / mS.mL and 0.361 g dry wt / g sugar for the yellow clone and 2.3 mg dry wt / mS.mL and 0.375 g dry wt / g sugar for the red one. Both cultures grew at the same specific growth rate of 0.22 d-1in the bubble column, as compared to 0.32 d-1in shake flasks, indicating mass transfer limitations for growth in reactors.  相似文献   

10.
Hairy root cultures from red beet (Beta vulgaris L.), which could be used for the commercial production of biologically active betalain pigments, were cultivated in a 3 L bubble column bioreactor in batch mode with various rates of air supply. Both the growth of the roots and betalain volumetric yields were highest (12.7 g accumulated dry biomass/L and 330.5 mg/ L, respectively) with a 10 L/h (0.083 vvm) air supply. The air flow rate also influenced the betacyanins/betaxanthins ratios in the cultures. Growth and betalains production were then examined in two fed-batch regimes (with a 10 L/h air supply), in which nutrient medium was fed just once or on five occasions, designated FBI and FBII, respectively. The root mass accumulation was increased in the FBI feeding regime (to 13.3 g accumulated dry biomass/ L), while in FBII the betalains content was ca. 11% higher (15.1 mg betacyanins/g dry weight and 14.0 mg betaxanthins/g dry weight) than in the most productive batch regime. Data on the time course of the utilization of major components in the medium during both operational modes were also collected. The implications of the information acquired are discussed, and the performance of the hairy roots (in terms of both growth and betalains production) in the bubble column reactor and previously investigated cultivation systems is compared.  相似文献   

11.
Hairy root cultures of Artemisia annua L were cultivated in four different culture systems: a flask, a bubble column, a modified bubble column and a modified inner-loop airlift bioreactor. The artemisinin contents of hairy root cultures in the bubble column and the modified inner-loop airlift bioreactor were higher than that in the modified bubble column. The growth rate and hairy root distribution in the modified inner-loop airlift bioreactor were better than those in other bioreactors, and dry weight and artemisinin production reached to 26.8 g/L and 536 mg/L after 20 days.  相似文献   

12.
Astragalus membranaceus is one of the most widely used traditional medicinal herbs in China, but the time required to generate a useful product in the field production is long. The growth of adventitious root cultures was compared between cultures grown in solid, liquid, or a 5-L balloon-type bubble bioreactor. The maximum growth ratio (final dry weight/initial dry weight) was determined for adventitious roots grown in the bioreactor. Studies carried out to optimize biomass production of adventitious roots compared adventitious root growth from various inoculum root lengths, inoculum densities, and aeration volume in the bioreactors. The maximum growth ratio occurred in treatments with a 1.5-cm inoculum root length, with 30 g (fresh weight) of inoculum per bioreactor or with an aeration volume of 0.1 vvm (air volume/culture medium volume per min). The polysaccharide, saponin, and flavonoid content of roots from bioreactor-grown cultures were compared to roots from field-grown plants grown for 1 and 3 yr. Total polysaccharide content of adventitious roots in the bioreactor (30.0 mg g−1 dry weight (DW)) was higher than the roots of 1-yr-old (13.8 mg g−1 DW) and 3-yr-old (21.1 mg g−1 DW) plants in the field. Total saponin (3.4 mg g−1 DW) and flavonoid (6.4 mg g−1 DW) contents were nearly identical to 3-yr-old roots and higher than that of 1-yr-old roots under field cultivation.  相似文献   

13.
14.
The mass production of tropane alkaloids from adventitious root cultures of Scopolia parviflora, in small-scale bubble column bioreactor (BCB) was attempted. Adventitious roots of S. parviflora produced relatively enhanced levels of scopolamine and hyoscyamine in bioreactor compared to flask type cultures, and rapidly produced root clumps, with continuously increasing biomass throughout the culture period. The production of scopolamine and hyoscyamine in the top and bottom regions of root clumps were higher than in the core region. The adventitious root cultures of S. parviflora in the BCB required a relatively high level of aeration. The optimized conditions for the bioreactor culture growth and alkaloid production were found to be 3g of inoculum, on a fresh weight basis, a 15-day culture period and 0.4vvm of airflow. The elicitation by Staphylococus aureus increased the specific compound of scopolamine, while the production of hyoscyamine was slightly inhibited in BCB cultures.  相似文献   

15.
Zhao D  Fu C  Chen Y  Ma F 《Plant cell reports》2004,23(7):468-474
Axenically grown Saussurea medusa plantlets were inoculated with four Agrobacterium rhizogenes strains, and hairy root lines were established with A. rhizogenes strain R1601 in N6 medium. PCR and Southern hybridization confirmed integration of the T-DNA fragment of the Ri plasmid from A. rhizogenes into the genome of S. medusa hairy roots. In N6 medium, maximum biomass of the hairy root cultures was achieved [8 g (dry weight) per liter; growth ratio 35-fold] after 21 days of culture. The amount of jaceosidin extracted from the hairy root cultures was 46 mg/l (production ratio of 37-fold) after 27 days of culture. The maximum jaceosidin content obtained using N6 medium was higher than that obtained with Modified White, MS or B5 medium. In N6 medium, the tip segments were more efficient for hairy root growth and jaceosidin production than the middle and basal regions of the root.Abbreviations AS Acetosyringone - BA Benzyladenine - cef Cefotaxime sodium - DW Dry weight - FW Fresh weight - HPLC High-performance liquid chromatography - IAA Indole-3-acetic acid - km Kanamycin - NAA -Naphthaleneacetic acid - SDS Sodium dodecyl sulfate  相似文献   

16.
Summary Border cells from Artemisia annua were examined from hairy roots grown in shake flasks, culture plates, a bubble column reactor, and a nutrient mist (aeroponic) reactor. When well-hydrated roots were subjected to shear, border cells were first released as an agglomerate and did not disperse for several hours. Staining with neutral red and fluorescein diacetate (FDA) showed that both agglomerates and dispersed cells were alive. It was determined that FDA is cleaved by pectin methylesterase (PME) and that PME may not be particularly active in the released agglomerates until the border cells disperse. Untransformed roots isolated from A. annua plants showed no border cell agglomerate formation and border cells readily dispersed. These results suggest that our hairy root clone is deficient in border cell release perhaps resulting from the transformation process.  相似文献   

17.
Filtrates of Fusarium sambucinum NRRL 13495 grown in a stagnant culture for 9 days contained up to 458 +/- 60 (mean +/- standard error; n = 3) mg of 4,15-diacetoxyscirpenol per liter depending on culture conditions. Extraction with ethyl acetate, chromatography on a column of silica gel, and crystallization from mixtures of ethyl acetate and hexane provided pure material in 96% yield.  相似文献   

18.
Filtrates of Fusarium sambucinum NRRL 13495 grown in a stagnant culture for 9 days contained up to 458 +/- 60 (mean +/- standard error; n = 3) mg of 4,15-diacetoxyscirpenol per liter depending on culture conditions. Extraction with ethyl acetate, chromatography on a column of silica gel, and crystallization from mixtures of ethyl acetate and hexane provided pure material in 96% yield.  相似文献   

19.
Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

20.
Oxygen requirements and mass transfer in hairy-root culture   总被引:1,自引:0,他引:1  
Oxygen mass transfer in clumps of Atropa belladonna hairy roots was investigated as a function of root density and external flow conditions. Convection was the dominant mechanism for mass transfer into root clumps 3.5 to 5.0 cm in diameter; Peclet numbers inside the clumps ranged from 1.4 x 10(3) to 7.1 x 10(4) for external superficial flow velocities between 0.4 and 1.4 cm s(-1). Local dissolved-oxygen levels and rates of oxygen uptake were measured in aflow chamber and in bubble column and stirred bioreactors. When air was used as oxygen source, intraclump dissolved-oxygen tensions ranged from90% to 100% air saturation at high external flow velocity andlow root density, to less than 20% air saturation in dense root clumps. Specific oxygen-uptake rate declined with increasing root density. When external boundary layers around individual roots were eliminated byforcing liquid through the clumps at superficial velocities between 0.2 and1.0 cm s(-1), internal dissolved-oxygen tension was maintained at 95% to 100% air saturation and rate of oxygen uptake at 1.6 x 10(-6) g g(-1) s(-1) dry weight. Liquid culture of single A. belladonna hairy roots was used to investigate the effect of dissolved-oxygen tensionon root growth and morphology. Total root length and number of root tips increased exponentially at oxygen tensions between 70% and 100%air saturation. Specific growth rate increased with oxygen tension up to 100% air saturation; this result demonstrates that hairy roots aeratedwithout oxygen supplementation are likely to be oxygenlimited. No growth occurred at 50% air saturation. Growth of hairy roots proceeded with an average length per tip of about 1 cm; this value was essentially independent of dissolved-oxygen tension between 70% and 100% air saturation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号