首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. coli HB101[pGEc47], which is able to convert octane to octanoate, but cannot oxidize octanoate further, was grown on defined medium with glucose as carbon source in batch and continuous culture. The biomass yield on glucose decreased from 0.32 +/- 0.02 g g-1 in aqueous cultivations to 0.25 +/- 0.02 g g-1 in the presence of octane. Maximal octanoate productivities of 0.6 g L-1 h-1 were the same as found in cultivations on complex medium. The glucose-based carbon recovery in these experiments was 99 +/- 4% (in extreme, between 90% and 105%). An increase of the octane feed from 1% to 2% (v/v) or more led to washout of cells. This effect was reversible when the octane feed was decreased to its initial value of 1%. Analysis of experimental data by model simulation strongly suggested that washout was due to inhibition by octanoate only. Pulses of octanoate to a continuous culture grown on aqueous media were applied to analyze the inhibition further. Inhibition by acetate was not significant, but its presence in the medium reflected a physiological state that made the cells more sensitive to octanoate inhibition. Model simulation with linear inhibition kinetics could perfectly predict glucose consumption and the resulting glucose concentration. The linear type of inhibition was confirmed by a variety of batch experiments in the presence of different concentrations of octanoate. The glucose-based specific growth rate, mu, decreased linearly with increasing concentrations of octanoate and became zero at a threshold concentration pmax of 5.25 +/- 0.25 g L-1.  相似文献   

2.
Biosynthesis of synthons in two-liquid-phase media   总被引:9,自引:0,他引:9  
The Pseudomonas oleovorans alkane hydroxylase and xylene oxygenase from Pseudomonas putida are versatile mono-oxygenases for stereo- and regioselective oxidation of aliphatic and aromatic hydrocarbons. Pseudomonas oleovorans and alkanol dehydrogenase deficient mutants of Pseudomonas have previously been used to produce alkanols from various alkanes and optically active epoxides from alkenes. Similarly, P. putida strains have been used to produce aromatic alcohols, aromatic acids, and optically active styrene oxides. A limitation in the use of Pseudomonas strains for bioconversions is that these strains can degrade some of the products formed. To counter this problem, we have constructed Escherichia coli recombinants, which contain the alk genes from the OCT plasmid of P. oleovorans [E. coli HB101 (pGEc47)] and the xylMA genes from the TOL plasmid of P. putida mt-2 [E. coli HB101 (pGB63)], encoding alkane hydroxylase and xylene oxygenase, respectively. Escherichia coli HB101 (pGEc47) was used to produce octanoic acid from n-octane and E. coli HB101 (pBG63) was put to use for the oxidation of styrene to styrene oxide in two-liquid phase biocatalysis at high cell densities. The alk(+) recombinant strain E. coli HB101 (pGEc47) was grown to 40 g/L cell dry mass in the presence of n-octane, which was converted to octanoic acid by the alkane oxidation system, the product accumulating in the aqueous phase. The xyl(+) recombinant E. coli HB101 (pBG63) was grown to a cell density of 26 g/L cell dry mass in the presence of around 7% (v/v) n-dodecane, which contained 2% (v/v) styrene. The recombinant E. coli (xyl(+)) converted styrene to (S)-(+)-styrene oxide at high enantiomeric excess (94% ee) and this compound partitioned almost exclusively into the organic phase. Using these high-cell-density two-liquid-phase cultures, the products accumulated rapidly, yielding high concentrations of products (50 mM octanoic acid and 90 mM styrene oxide) in the respective phases. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
Succinic acid (SA) is an important platform molecule in the synthesis of a number of commodity and specialty chemicals. In the present work, dual-phase batch fermentations with the E. coli strain AFP184 were performed using a medium suited for large-scale industrial production of SA. The ability of the strain to ferment different sugars was investigated. The sugars studied were sucrose, glucose, fructose, xylose, and equal mixtures of glucose and fructose and glucose and xylose at a total initial sugar concentration of 100 g L-1. AFP184 was able to utilize all sugars and sugar combinations except sucrose for biomass generation and succinate production. For sucrose as a substrate no succinic acid was produced and none of the sucrose was metabolized. The succinic acid yield from glucose (0.83 g succinic acid per gram glucose consumed anaerobically) was higher than the yield from fructose (0.66 g g-1). When using xylose as a carbon source, a yield of 0.50 g g-1 was obtained. In the mixed-sugar fermentations no catabolite repression was detected. Mixtures of glucose and xylose resulted in higher yields (0.60 g g-1) than use of xylose alone. Fermenting glucose mixed with fructose gave a lower yield (0.58 g g-1) than fructose used as the sole carbon source. The reason is an increased pyruvate production. The pyruvate concentration decreased later in the fermentation. Final succinic acid concentrations were in the range of 25-40 g L-1. Acetic and pyruvic acid were the only other products detected and accumulated to concentrations of 2.7-6.7 and 0-2.7 g L-1. Production of succinic acid decreased when organic acid concentrations reached approximately 30 g L-1. This study demonstrates that E. coli strain AFP184 is able to produce succinic acid in a low cost medium from a variety of sugars with only small amounts of byproducts formed.  相似文献   

4.
自养黄杆菌合成羟基丁酸和羟基戊酸共聚体的发酵研究   总被引:14,自引:2,他引:12  
采用本实验室从土壤中分离到的一株自养黄杆菌进行了羟基丁酸和羟基戊酸共聚体〔P(HB-co-HV)〕的发酵试验。实验结果表明,该菌株是自养黄杆菌葡萄糖运输突变株,可以葡萄糖、果糖、蔗糖、麦芽糖、乙酸盐、乳酸盐和苹果酸盐作为唯一碳源,尤以葡萄糖和果糖效果最佳。硫酸铵、氯化铵和蛋白胨等不同氮源不影响其生长,却影响细胞中P(HB-co-HV)的含量和P(HB-co-HV)中HV/HB的比例。应用两阶段控制方式,经42h的补料分批发酵,细胞浓度达34.9g·L~(-1),P(HB-co-HV)浓度达25.28g·L~(-1)。细胞和P(HB-co-HV)生产速率系数分别为0.83g·L~(-1)”·h~(-1)和0.61g·L~(-1)·h~(-1)。以基质为基准的细胞得率系数(Yx/s)、产物得率系数(Yp/s)和以干细胞为基准的产物得率系数(Yp/x)分别为0.283(g/g)、0.174(g/g)和0.73(g/g)。改变培养基中碳氮源组分可将P(HB-co-HV)中HB的含量调节在24%~78%之间。  相似文献   

5.
Growth yield factors, plasmid stability, cellular plasmid content, and cloned gene product activity for Escherichia coli HB101 containing plasmid pDM246 were measured at several dilution rates in continuous culture. Cell mass yield per mass of glucose consumed declined with increasing dilution rate. There was no evidence of plasmid segregational instability in any experiments, none of which employed selective medium. Plasmid content per cell varied with population-specific growth rate as observed in earlier batch experiments with the same strain. Plasmid content declined with increasing specific growth rate following indication of a maximum number of plasmids per cell at specific growth rates of ca. 0.3 h(-1). Cloned gene product (beta-lactamase) activity exhibited a sharp maximum with respect to dilution rate in continuous culture. Qualitatively different results were observed in previous experiments in batch cultivation in which specific growth rate changes were effected by altering medium composition.  相似文献   

6.
Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
8.
The alk genes enable Pseudomonas oleovorans to utilize alkanes as sole carbon and energy source. Expression of the alk genes in P. oleovorans and in two Escherichia coli recombinants induced iron limitation in minimal medium cultures. Further investigation showed that the expression of the alkB gene, encoding the integral cytoplasmic membrane protein AlkB, was responsible for the increase of the iron requirement of E. coli W3110 (pGEc47). AlkB is the non-heme iron monooxygenase component of the alkane hydroxylase system, and can be synthesized to levels up to 10% (w/w) of total cell protein in E. coli W3110 (pGEc47). Its synthesis is, however, strictly dependent on the presence of sufficient iron in the medium. Our results show that a glucose-grown E. coli alk+ strain can reach alkane hydroxylase activities of about 25 U/g cdw, and are consistent with the recent finding that catalytically active AlkB contains two, rather than one iron atom per polypeptide chain.  相似文献   

9.
Genetically engineered E. coli K12 BMH-71-18 with plasmid PBV-867 was used for constitutive expression of human interferon-alpha 1 (IFN) with a defined medium. A manual, time-based, fed-batch cultivation process produced a cell density of 26.3 g l-1 (OD550 89), an IFN activity of 1.55 x 10(8) IU l-1 and a specific IFN productivity of 0.65 x 10(6) IU g-1. An analysis was conducted to characterize the problems involved in the high density microbial processes of recombinant protein production. The strategy suggested by the analysis is to establish a nutrient feeding profile that improves both the plasmid stability and the overall productivity of IFN. The nutrient feeding procedure developed here was based on the growth dynamics and a glucose consumption model. By using this procedure to continuously supply nutrients during cultivations, cell density reached 58 to 80 g l-1 and the specific IFN productivities of these runs were increased over that of the manual process. Nutrient feeding rates were found to affect the specific IFN productivity substantially. The optimized process achieved an IFN activity of 1.26 x 10(9) IU l-1, a cell density of 58 g l-1 and a specific IFN productivity of 2.2 x 10(7) IU g-1. More significantly, the overall productivity IU l-1 h-1 of the optimized, computer-controlled cultivation process was increased 12.9-fold over that of the manual cultivation process.  相似文献   

10.
A high cell density cultivation (HCDC) for growth of Escherichia coli in an especially designed glucose/mineral salt medium is proposed. The HCDC essentially starts as a batch process which is followed by a two-phase fed-batch cultivation. After unlimited growth at mu max = 0.45 h-1 in the batch part, growth was controlled at a reduced specific growth rate (mu = 0.11 h-1 less than mu max) over a period of 3 doubling times in which the biomass concentration increased from 12 to 95 g 1(-1) (phase 1 of fed-batch cultivation). Control of growth (mu) was realized by a PO2 control loop (by variation of glucose feeding) and a mu control loop (by variation of agitation speed N) while the actual mu was calculated from the off-gas composition. If the agitation rate cannot be increased anymore the mu controller is switched off (end of phase 1). In the following phase 2, mu declines, however, the still acting pO2 (glucose) controller guarantees sufficient O2 supply till the end of the cultivation with a biomass concentration of 110 g 1(-1) (dry mass). The proposed HCDC suppresses generation of inhibitory by-products and the high yield coefficients indicate the economy of the process.  相似文献   

11.
12.
An optimized, defined minimal medium was developed to support balanced growth of Escherichia coli X90 harboring a recombinant plasmid. Foreign protein expression was repressed in these studies. A pulse injection technique was used to identify the growth responses to nutrients in a chemostat. Once the nutrients essential for growth had been identified, the yield coefficients for individual medium components. These yield coefficients were used to develop an optimized, glucose-limited defined minimal medium that supports balanced cell growth in chemostat culture. The biomass and substrate concentrations follow the Monod chemostat model. The maximum specific growth rate determined in a washout experiment is 0.87 h(-1) for this strain in the optimized medium. the glucose yield factor is 0.42 g DCW/g glucose and the maintenance coefficient is zero in the glucose-limited chemostat culture. (c) 1993 John Wiley & Sons, Inc.  相似文献   

13.
The maintenance energy coefficient of Desulfovibrio vulgaris was studied by using a chemostat, with Methanosarcina barkeri or sulfate as the electron acceptor; lithium lactate or sodium pyruvate served as the electron donor. The experiments showed that the growth energetics of D. vulgaris or M. barkeri were greatly affected by maintenance energy coefficients. When D. vulgaris grew on lactate or pyruvate medium with sulfate, these coefficients reached 4.40 and 2.80 mM g-1 h-1, respectively; on lactate medium in the presence of M. barkeri the same coefficient reached a value of 2.90 mM g-1 h-1. Results also showed that the increase of the value of the maintenance energy coefficient corresponded to a decrease of the biomass produced. D. vulgaris maximal growth yield values calculated by use of the Pirt equation were slightly higher with M. barkeri (maximal growth yield, 10 g/mol) than with sulfate (maximal growth yield, 7.5 g/mol). This finding could be interpreted by reference to the ATP-generating reactions involved in D. vulgaris growth in the presence of sulfate or M. barkeri.  相似文献   

14.
The Pseudomonas oleovorans alkB gene is expressed in alk+ Escherichia coli W3110 to 10 to 15% of the total cell protein, which is exceptional for a (foreign) cytoplasmic membrane protein. In other E. coli recombinants such as alk+ HB101, AlkB constitutes 2 to 3% of the total protein. In this study, we have investigated which factors determine the expression level of alkB in alk+ W3110. In particular, we have investigated the role of AlkB-induced stimulation of phospholipid synthesis. Blocking phospholipid synthesis in alk+ W3110 did not specifically alter the expression of alkB, and we conclude that stimulation of phospholipid synthesis is not a prerequisite for high-level expression of the membrane protein. W3110 is able to produce exceptionally high levels of alkane monooxygenase, because the rate of alkB mRNA synthesis in W3110 is an order of magnitude higher than that in HB101. This may be due in part to the higher copy number of pGEc47 in W3110 in comparison with HB101.  相似文献   

15.
ABSTRACT: BACKGROUND: Poly(4-hydroxybutyrate) [poly(4HB)] is a strong thermoplastic biomaterial with remarkable mechanical properties, biocompatibility and biodegradability. However, it is generally synthesized when 4-hydroxybutyrate (4HB) structurally related substrates such as gamma-butyrolactone, 4-hydroxybutyrate or 1,4-butanediol (1,4-BD) are provided as precursor which are much more expensive than glucose. At present, high production cost is a big obstacle for large scale production of poly(4HB). RESULTS: Recombinant Escherichia coli strain was constructed to achieve hyperproduction of poly(4-hydroxybutyrate) [poly(4HB)] using glucose as a sole carbon source. An engineering pathway was established in E. coli containing genes encoding succinate degradation of Clostridium kluyveri and PHB synthase of Ralstonia eutropha. Native succinate semialdehyde dehydrogenase genes sad and gabD in E. coli were both inactivated to enhance the carbon flux to poly(4HB) biosynthesis. Four PHA binding proteins (PhaP or phasins) including PhaP1, PhaP2, PhaP3 and PhaP4 from R. eutropha were heterologously expressed in the recombinant E. coli, respectively, leading to different levels of improvement in poly(4HB) production. Among them PhaP1 exhibited the highest capability for enhanced polymer synthesis. The recombinant E. coli produced 5.5 g L-1 cell dry weight containing 35.4% poly(4HB) using glucose as a sole carbon source in a 48 h shake flask growth. In a 6-L fermentor study, 11.5 g L-1 cell dry weight containing 68.2% poly(4HB) was obtained after 52 h of cultivation. This was the highest poly(4HB) yield using glucose as a sole carbon source reported so far. Poly(4HB) was structurally confirmed by gas chromatographic (GC) as well as 1H and 13C NMR studies. CONCLUSIONS: Significant level of poly(4HB) biosynthesis from glucose can be achieved in sad and gabD genes deficient strain of E. coli JM109 harboring an engineering pathway encoding succinate degradation genes and PHB synthase gene, together with expression of four PHA binding proteins PhaP or phasins, respectively. Over 68% poly(4HB) was produced in a fed-batch fermentation process, demonstrating the feasibility for enhanced poly(4HB) production using the recombinant strain for future cost effective commercial development.  相似文献   

16.
The effects of changing the composition of the growth medium, the dilution rate and the source of the bacterial host on maintenance of the plasmid pAT153 in Escherichia coli HB101 have been studied. In a medium supplemented with Casamino acids, the plasmid was maintained longer during phosphate-limited growth at a dilution rate of 0.3 h-1 than at 0.15 h-1. In contrast, phosphate-limited growth was not achieved when the Casamino acids were replaced by proline, leucine and thiamin to satisfy the auxotrophic requirements of the host. Although 100% of the bacteria were still ampicillin resistant after 72 generations of growth at a dilution rate of 0.15 h-1, the original plasmid had almost totally been replaced by a structurally modified plasmid which lacked a functional tet gene. Further experiments confirmed that neither the host nor the plasmid was retained unchanged in the minimal medium. The changes were highly reproducible and reflected periodic selection of sub-populations which were either plasmid-free or carried a structurally modified plasmid, which had reverted to Leu+ or Pro+, or had acquired other chromosomal mutations which gave them a selective advantage. We conclude that in complex media the plasmid is maintained longer by E. coli HB101 at a high than at a low growth rate and that different results reported from different laboratories are largely due to differences in analytical techniques and the growth medium rather than to differences in the bacterial host or the plasmid used. A fermenter-adapted strain was isolated which reproducibly maintained the plasmid longer during phosphate-limited continuous growth than the original strain which had been cultured on laboratory media.  相似文献   

17.
Abstract During exponential growth, Erwinia chrysanthemi (EC16) exports 99% of the protease (PRT) into the growth medium. By screening an EC16 genomic library in Escherichia coli HB101, several Prt+ clones were identified. A 16-kb Eco RI fragment, carrying the prt gene, was subcloned into pBR322 (pAKC326). E. coli HB101[pAKC326] cells exported PRT into the growth medium during exponential growth. PRT export was not accompanied by periplasmic leakage. E. coli HB101 carrying EC16 prt and pel genes (encoding pectate lyase) exported PRT but retained PEL in the periplasm. These findings indicate the occurrence of a PRT-specific export system in EC16, which is also functional in an E. coli strain carrying the prt + DNA segment.  相似文献   

18.
The growth characteristics and acetate production of several Escherichia coli strains were compared by using shake flasks, batch fermentations, and glucose-feedback-controlled fed-batch fermentations to assess the potential of each strain to grow at high cell densities. Of the E. coli strains tested, including JM105, B, W3110, W3100, HB101, DH1, CSH50, MC1060, JRG1046, and JRG1061, strains JM105 and B were found to have the greatest relative biomass accumulation, strain MC1060 accumulated the highest concentrations of acetic acid, and strain B had the highest growth rates under the conditions tested. In glucose-feedback-controlled fed-batch fermentations, strains B and JM105 produced only 2 g of acetate.liter-1 while accumulating up to 30 g of biomass.liter-1. Under identical conditions, strains HB101 and MC1060 accumulated less than 10 g of biomass.liter-1 and strain MC1060 produced 8 g of acetate.liter-1. The addition of various concentrations of sodium acetate to the growth medium resulted in a logarithmic decrease, with respect to acetate concentration, in the growth rates of E. coli JM105, JM105(pOS4201), and JRG1061. These data indicated that the growth of the E. coli strains was likely to be inhibited by the acetate they produced when grown on media containing glucose. A model for the inhibition of growth of E. coli by acetate was derived from these experiments to explain the inhibition of acetate on E. coli strains at neutral pH.  相似文献   

19.
The growth characteristics and acetate production of several Escherichia coli strains were compared by using shake flasks, batch fermentations, and glucose-feedback-controlled fed-batch fermentations to assess the potential of each strain to grow at high cell densities. Of the E. coli strains tested, including JM105, B, W3110, W3100, HB101, DH1, CSH50, MC1060, JRG1046, and JRG1061, strains JM105 and B were found to have the greatest relative biomass accumulation, strain MC1060 accumulated the highest concentrations of acetic acid, and strain B had the highest growth rates under the conditions tested. In glucose-feedback-controlled fed-batch fermentations, strains B and JM105 produced only 2 g of acetate.liter-1 while accumulating up to 30 g of biomass.liter-1. Under identical conditions, strains HB101 and MC1060 accumulated less than 10 g of biomass.liter-1 and strain MC1060 produced 8 g of acetate.liter-1. The addition of various concentrations of sodium acetate to the growth medium resulted in a logarithmic decrease, with respect to acetate concentration, in the growth rates of E. coli JM105, JM105(pOS4201), and JRG1061. These data indicated that the growth of the E. coli strains was likely to be inhibited by the acetate they produced when grown on media containing glucose. A model for the inhibition of growth of E. coli by acetate was derived from these experiments to explain the inhibition of acetate on E. coli strains at neutral pH.  相似文献   

20.
The fibrillar strain Streptococcus salivarius HB and a non-fibrillar mutant, strain HB-B, were grown in a defined medium under glucose limitation in a chemostat. Fermentation balances were produced for both strains in batch culture and at growth rates between 0.1/h and 1.1/h. In batch culture both strains fermented glucose to lactate, but in continuous culture glucose was fermented to formate, acetate and ethanol with increasing amounts of lactate as the growth rate was increased. Lactate never became the major fermentation product even at the highest growth rate. Amino acid analysis showed that only lysine was more than 50% utilized, while proline and tyrosine showed net production. The non-fibrillar strain HB-B showed, in general, a reduced utilization of amino acids compared with the fibrillar strain HB. Calculated growth yields and maintenance energies for the two strains showed that there was a reduction in the true growth yield and the maintenance energy coefficient of the non-fibrillar strain HB-B when compared with the fibrillar strain HB. The increase in the maintenance energy of the fibrillar strain HB (1.382 mmol/g/h) when compared with the non-fibrillar strain HB-B (0.546 mmol/g/h) of 153% is proposed to be the energy required for the maintenance of the fibrillar surface of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号