共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system 总被引:7,自引:0,他引:7
Summary The restriction of oxygen transfer in Ca-alginate beads used for the immobilization of microbial cells was applied to a coupled reductive and oxidative microbial degradation of the xenobiotic 4-chloro-2-nitrophenol (CNP). The conversion of CNP by Enterobacter cloacae under anaerobic conditions led to the formation of 4-chloro-2-aminophenol (CAP, 81%) and 4-chloro-2-acetaminophenol (CAAP, 16%) after 50 h incubation. CAP, the main reduction product, was further degraded under aerobic conditions by Alcaligenes sp. TK-2, a hybrid strain isolated by conjugative in-vivo gene transfer. Whereas both degradation steps excluded one another in homogeneous systems with free cells, a coupled reductive and oxidative degradation of CNP was observed in one aerated reactor system after co-immobilization of both strains in Ca alginate. The diameter of the alginate beads used for immobilization was recognized as one main factor determining the properties of this mixed culture system.
Offprint requests to: H.-J. Rehm 相似文献
2.
K. S. Babu P. V. Ajith-Kumar A. A. M. Kunhi 《World journal of microbiology & biotechnology》1995,11(2):148-152
A mixed culture of a chlorobenzoate-(3-CBA)-degradingPseudomonas aeruginosa, strain 3mT, and a phenol/cresols-degradingPseudomonas sp., strain CP4, simultaneously and efficiently degraded mixtures of 3-CBA and phenol/cresols. However, strains 3mT and CP4 usedortho- andmeta-ring cleavage pathways, respectively. Degradation of 3-CBA was complete when the 3-CBA was equal in amount to or less than that of phenol. CP4/3mT inoculum ratios (w/w) of 1:1 or 1:2 gave the most effective degradation of both the substrates in the mixture. The mixed culture degraded equimolar mixtures of 3-CBA/phenol up to 10mm. Equimolar mixtures of 3-CBA ando-, m- orp-cresol were also degraded by the mixed culture.The authors are with the Microbiology and Bioengineering Department, Central Food Technological Research Institute, Mysore-570013, India; 相似文献
3.
Degradation of mono-chlorophenols by a mixed microbial community via a meta- cleavage pathway 总被引:3,自引:0,他引:3
A mixed microbial community, specially designed todegrade a wide range of substituted aromaticcompounds, was examined for its ability to degrademono-chlorophenols as sole carbon source in aerobicbatch cultures. The mixed culture degraded 2-, 3-, and4 -chlorophenol (1.56 mM) via a meta- cleavagepathway. During the degradation of 2- and3-chlorophenol by the mixed culture, 3-chlorocatecholproduction was observed. Further metabolism was toxicto cells as it led to inactivation of the catechol2,3-dioxygenase enzyme upon meta- cleavage of3-chlorocatechol resulting in incomplete degradation.Inactivation of the meta- cleavage enzyme led toan accumulation of brown coloured polymers, whichinterfered with the measurement of cell growth usingoptical denstiy. Degradation of 4-chlorophenol by themixed culture led to an accumulation of5-chloro-2-hydroxymuconic semialdehyde, themeta- cleavage product of 4-chlorocatechol. Theaccumulation of this compound did not interfere withthe measurement of cell growth using optical density.5-chloro-2-hydroxymuconic semialdehyde was furthermetabolized by the mixed culture with a stoichiometricrelease of chloride, indicating complete degradationof 4-chlorophenol by the mixed culture via ameta- cleavage pathway. 相似文献
4.
M Ezaki M Iwami M Yamashita T Komori K Umehara H Imanaka 《Applied microbiology》1992,58(12):3879-3882
Production of biphenomycin A by Streptomyces griseorubiginosus 43708 was stimulated by a mixed culture with a partner strain, Pseudomonas maltophilia 1928. This stimulatory effect on biphenomycin A accumulation by the mixed culture was caused by the enzyme activity which strain 1928 possessed. It is suggested that in a mixed culture strain 43708 produces a precursor of biphenomycin A in culture broth and that strain 1928 converts the precursor to biphenomycin A. 相似文献
5.
M Ezaki M Iwami M Yamashita T Komori K Umehara H Imanaka 《Applied and environmental microbiology》1992,58(12):3879-3882
Production of biphenomycin A by Streptomyces griseorubiginosus 43708 was stimulated by a mixed culture with a partner strain, Pseudomonas maltophilia 1928. This stimulatory effect on biphenomycin A accumulation by the mixed culture was caused by the enzyme activity which strain 1928 possessed. It is suggested that in a mixed culture strain 43708 produces a precursor of biphenomycin A in culture broth and that strain 1928 converts the precursor to biphenomycin A. 相似文献
6.
Chlorinated ethenes are toxic substances which are widely distributed groundwater contaminants and are persistent in the subsurface environment. Reports on the biodegradation of these compounds under anaerobic conditions which might occur naturally in groundwater show that these substances degrade very slowly, if at all. Previous attempts to degrade chlorinated ethenes aerobically have produced conflicting results. A mixed culture containing methane-utilizing bacteria was obtained by methane enrichment of a sediment sample. Biodegradation experiments carried out in sealed culture bottles with radioactively labeled trichloroethylene (TCE) showed that approximately half of the radioactive carbon had been converted to 14CO2 and bacterial biomass. In addition to TCE, vinyl chloride and vinylidene chloride could be degraded to products which are not volatile chlorinated substances and are therefore likely to be further degraded to CO2. Two other chlorinated ethenes, cis and trans-1,2-dichloroethylene, were shown to degrade to chlorinated products, which appeared to degrade further. A sixth chlorinated ethene, tetrachloroethylene, was not degraded by the methane-utilizing culture under these conditions. The biodegradation of TCE was inhibited by acetylene, a specific inhibitor of methane oxidation by methanotrophs. This observation supported the hypothesis that a methanotroph is responsible for the observed biodegradations. 相似文献
7.
8.
Numerical modeling and uncertainties in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture 总被引:2,自引:0,他引:2
The rates of methane utilization and trichloroethylene (TCE) cometabolism by a methanotrophic mixed culture were characterized in batch and pseudo-steady-state studies. Procedures for determination of the rate coefficients and their uncertainties by fitting a numerical model to experimental data are described. The model consisted of a system of differential equations for the rates of Monod kinetics, cell growth on methane and inactivation due to TCE transformation product toxicity, gas/liquid mass transfer of methane and TCE, and the rate of passive losses of TCE. The maximum specific rate of methane utilization (k(CH(4) )) was determined by fitting the numerical model to batch experimental data, with the initial concentration of active methane-oxidizing cells (X(0) (a)) also used as a model fitting parameter. The best estimate of k(CH(4) ) was 2.2 g CH(4)/g cells-d with excess copper available, with a single-parameter 95% confidence interval of 2.0-2.4 mg/mg-d. The joint 95% confidence region for k(CH(4) ) and X(0) (a) is presented graphically. The half-velocity coefficient (K(S,CH(4) )) was 0.07 mg CH(4)/L with excess copper available and 0.47 mg CH(4)/L under copper limitation, with 95% confidence intervals of 0.02-0.11 and 0.35-0.59 mg/L, respectively. Unique values of the TCE rate coefficients k(TCE) and K(S,TCE) could not be determined because they were found to be highly correlated in the model fitting analysis. However, the ratio k(TCE)/K(S,TCE) and the TCE transformation capacity (T(C)) were well defined, with values of 0.35 L/mg-day and 0.21 g TCE/g active cells, respectively, for cells transforming TCE in the absence of methane or supplemental formate. The single-parameter 95% confidence intervals for k(TCE)/K(S,TCE) and T(C) were 0.27-0.43 L/mg-d and 0.18-0.24 g TCE/g active cells, respectively. The joint 95% confidence regions for k(TCE)/K(S,TCE) and T(C) are presented graphically. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 320-331, 1997. 相似文献
9.
Propagation by axillary and multiple axillary bud development was achieved in three native Leptospermum spp. when axillary buds derived from nodal tissues ex mature plants were placed in benzylaminopurine media (0.04–1.0 M) containing macro- and micro-nutrients, sucrose (0.06 M) and a vitamin/amino acid supplement. Reduction of agar concentration from 0.8 to 0.2% greatly stimulated axillary bud development and growth in L. flavescens and L. brachyandrum. Rooting of axillary shoots was stimulated by 2,4-dichlorophenoxyacetic acid and p-chlorophenoxy acetic acid in L. flavescens at concentrations of 5 and 1 M respectively. In L. petersonii ssp. root initiation and development was favoured by -naphthoxyacetic acid (1 M) and in L. brachyandrum indole butyric acid and -naphthalene acetic acid (1 M) were almost equally effective. 相似文献
10.
R.C. Anderson N.A. Krueger J.A. Byrd R.B. Harvey T.R. Callaway T.S. Edrington D.J. Nisbet 《Journal of applied microbiology》2009,107(4):1258-1268
Aims: To determine if the purported deaminase inhibitors diphenyliodonium chloride (DIC) and thymol reduce the growth and survivability of Campylobacter. Methods and Results: Growth rates of Campylobacter jejuni and Camp. coli were reduced compared to unsupplemented controls during culture in Muellar–Hinton broth supplemented with 0·25 μmol DIC or thymol ml?1 but not with 0·01 μmol monensin ml?1 or 1% ethanol. Recovery of Camp. jejuni and Camp. coli was reduced >5 log10 CFU from controls after 24 h pure culture in Bolton broth supplemented with 0·25 or 1·0 μmol DIC ml?1 or with 1·0 μmol thymol ml?1. Similarly, each test Campylobacter strain was reduced >3 log10 CFU from controls after 24 h mixed culture with porcine faecal microbes in Bolton broth supplemented with 0·25 or 1·0 μmol DIC ml?1 or with 1·0 μmol thymol ml?1. Treatments with 0·25 μmol thymol ml?1, 0·01 μmol monensin ml?1 or 1% ethanol were less effective. Ammonia production during culture or incubation of cell lysates was reduced by 0·25 or 1·0 μmol DIC ml?1 but only intermittently reduced, if at all, by the other treatments. Conclusions: Diphenyliodonium chloride and thymol reduced growth, survivability and ammonia production of Camp. jejuni and Camp. coli. Significance and Impact of the Study: Results suggest a potential physiological characteristic that may be exploited to develop interventions. 相似文献
11.
12.
Trypanosoma spp., Leishmania spp. and Leptomonas spp.: enzymes of ornithine-arginine metabolism 总被引:1,自引:0,他引:1
Eight species of trypanosomatid flagellates, Trypanosoma cruzi, T. mega, T. conorhini, Leishmania donovani, L. braziliensis, Leptomonas seymouri, L. collosoma, and L. samueli, were examined for the presence of enzymes of the arginine-ornithine metabolism. Arginase was found in species of the genera Leishmania and Leptomonas. Citrulline hydrolase was found only in species of Leptomonas. Trypanosoma spp. did not present any of the mentioned enzymes. Ornithine carbamoyltransferase and argininosuccinate lyase were found only in Leptomonas samueli, which also possessed arginine deiminase. With the sole exception of L. samueli the other species seem to present a uniform enzyme constitution, peculiar to their genera and different from the enzyme patterns of other genera of trypanosomatids already known. The potential usefulness of these findings for taxonomical purposes is discussed. 相似文献
13.
Hybrids resulting from crosses between Baccharis sarothroides and B. pilularis (FS1), B. sarothroides (FS2) and B. megapotamica (FS3) were tested for their tolerance to trichothecenes as well as their ability to metabolize the toxins. B. sarothroides (desert broom) was placed in an aqueous solution containing 500 ppm of T-2 toxin and showed visible signs of toxicity on the twigs at 21 h after exposure but not at 6 h, indicating some resistance. Samples of the twigs harvested 6 and 21 h after treatment contained, respectively, T-2 (0.03 and 2.2 micrograms/g), HT-2 (0.09 and 7.6 micrograms/g), and T-2-tetraol (2.1 and 2.6 micrograms/g). The hybrid FS1 showed no signs of toxicity 6 h after treatment, and its twigs contained T-2 (0.8 micrograms/g), HT-2 (10.2 micrograms/g), and T-2-tetraol (10.8 micrograms/g). The leaves at 6 h contained 0.5 micrograms of T-2, 1.7 micrograms of HT-2, 0.01 microgram of 3'-hydroxy-HT-2, and 41 micrograms of T-2-tetraol per g. At 21 h, toxic signs were apparent and the twigs contained T-2 (39 micrograms/g), HT-2 (62 micrograms/g), 3'-hydroxy-HT-2 (0.8 microgram/g), and T-2-tetraol (22 micrograms/g).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Chlorinated ethenes are toxic substances which are widely distributed groundwater contaminants and are persistent in the subsurface environment. Reports on the biodegradation of these compounds under anaerobic conditions which might occur naturally in groundwater show that these substances degrade very slowly, if at all. Previous attempts to degrade chlorinated ethenes aerobically have produced conflicting results. A mixed culture containing methane-utilizing bacteria was obtained by methane enrichment of a sediment sample. Biodegradation experiments carried out in sealed culture bottles with radioactively labeled trichloroethylene (TCE) showed that approximately half of the radioactive carbon had been converted to 14CO2 and bacterial biomass. In addition to TCE, vinyl chloride and vinylidene chloride could be degraded to products which are not volatile chlorinated substances and are therefore likely to be further degraded to CO2. Two other chlorinated ethenes, cis and trans-1,2-dichloroethylene, were shown to degrade to chlorinated products, which appeared to degrade further. A sixth chlorinated ethene, tetrachloroethylene, was not degraded by the methane-utilizing culture under these conditions. The biodegradation of TCE was inhibited by acetylene, a specific inhibitor of methane oxidation by methanotrophs. This observation supported the hypothesis that a methanotroph is responsible for the observed biodegradations. 相似文献
15.
Biodegradation of polyvinyl alcohol by a mixed microbial culture 总被引:1,自引:0,他引:1
Jian Chen Ying Zhang Guo-Cheng Du Zhao-Zhe Hua Yang Zhu 《Enzyme and microbial technology》2007,40(7):1686-1691
A mixed culture capable of degrading 1 g l−1 polyvinyl alcohol (PVA) completely was screened from sludge samples at Pacific Textile Factory, Wuxi, China. This mixed culture had stronger capability of degrading PVA with low polymerization and high saponification than degrading PVA with high polymerization and low saponification. Inorganic nitrogen source was more suitable for the mixed culture to grow and degrade PVA than organic nitrogen source. Microorganisms and relative abundance of this mixed culture were explored by terminal restriction fragment length polymorphism (T-RFLP). Small PVA molecules were detected in cell extracts of the mixed culture. This indicated that PVA degradation in the mixed culture was in fact a combined action of extracellular and intracellular enzymes. Two strains producing extracellular PVA-degrading enzyme were isolated from the mixed culture. They could individually degrade PVA1799 with polymerization of 1700 from initial average molecular weight 112,981 to 98,827 Da and 84,803 Da, respectively. However, only small amount of PVA124 in polymerization of 400 could be degraded by these two strains. 相似文献
16.
Biodegradation of 3-Nitrotyrosine by Burkholderia sp. Strain JS165 and Variovorax paradoxus JS171
下载免费PDF全文

The cascade of reactive nitrogen species generated from nitric oxide causes modification of proteins, lipids, and nucleic acids in a wide range of organisms. 3-Nitrotyrosine is one of the most common products of the action of reactive nitrogen species on proteins. Although a great deal is known about the formation of 3-nitrotyrosine, the subsequent metabolism of this compound is a mystery. Variovorax paradoxus JS171 and Burkholderia sp. strain JS165 were isolated from soil slurries when 3-nitrotyrosine was provided as the sole carbon, nitrogen, and energy source. During growth on 3-nitrotyrosine stoichiometric amounts of nitrite were released along with approximately one-half of the theoretically available ammonia. The catabolic pathway involving oxidative denitration is distinct from the pathway for tyrosine metabolism. The facile isolation and the specific, regulated pathway for 3-nitrotyrosine degradation in natural ecosystems suggest that there is a significant flux of 3-nitrotyrosine in such environments. 相似文献
17.
Anaerobic glycerol degradation by a mixed microbial culture from a fermenter fed with industrial alcohol distillation waste water, was investigated in the absence or presence of sulfate, at 37°C and at a constant pH of 7.2. In the absence of sulfate, glycerol utilization was found to be characterized by the transient formation of 1,3-propanediol prior to propionate and acetate accumulation. In the presence of sulfate, 1,3-propanediol production was minor, and the carbon balance reflected a considerable accumulation of intermediate(s). A study of the role of sulfate reduction and methanogenesis on anaerobic 1,3-propanediol degradation showed that consumption of this substrate by the mixed microbial culture required a terminal electron acceptor. The number of fermentative and sulfate-reducing bacteria with glycerol or 1,3-propanediol as carbon and energy source revealed that sulfate-reducing bacteria outcompete fermentative bacteria for these substrates. The possible ecological role of sulfate-reducing bacteria in the metabolism of these reduced substrates is discussed. 相似文献
18.
Heparin greatly accelerates the reaction between antithrombin and its target proteinases, thrombin and factor Xa, by virtue of a specific pentasaccharide sequence of heparin binding to antithrombin. The binding occurs in two steps, an initial weak interaction inducing a conformational change of antithrombin that increases the affinity for heparin and activates the inhibitor. Arg46 and Arg47 of antithrombin have been implicated in heparin binding by studies of natural and recombinant variants and by the crystal structure of a pentasaccharide-antithrombin complex. We have mutated these two residues to Ala or His to determine their role in the heparin-binding mechanism. The dissociation constants for the binding of both full-length heparin and pentasaccharide to the R46A and R47H variants were increased 3-4-fold and 20-30-fold, respectively, at pH 7.4. Arg46 thus contributes only little to the binding, whereas Arg47 is of appreciable importance. The ionic strength dependence of the dissociation constant for pentasaccharide binding to the R47H variant showed that the decrease in affinity was due to the loss of both one charge interaction and nonionic interactions. Rapid-kinetics studies further revealed that the affinity loss was caused by both a somewhat lower forward rate constant and a greater reverse rate constant of the conformational change step, while the affinity of the initial binding step was unaffected. Arg47 is thus not involved in the initial weak binding of heparin to antithrombin but is important for the heparin-induced conformational change. These results are in agreement with a previously proposed model, in which an initial low-affinity binding of the nonreducing-end trisaccharide of the heparin pentasaccharide induces the antithrombin conformational change. This change positions Arg47 and other residues for optimal interaction with the reducing-end disaccharide, thereby locking the inhibitor in the activated state. 相似文献
19.
Degradation of cocaine by a mixed culture of Pseudomonas fluorescens MBER and Comamonas acidovorans MBLF.
下载免费PDF全文

A mixed culture that could utilize cocaine as the sole source of carbon and energy for growth was isolated by selective enrichment. The individual microorganisms within this mixed culture were identified as Pseudomonas fluorescens (termed MBER) and Comamonas acidovorans (termed MBLF). Each microorganism was shown to be unable to grow to any appreciable extent on 10 mM cocaine in the absence of the other. C. acidovorans MBLF was found to possess an inducible cocaine esterase which catalyzed the hydrolysis of cocaine to ecgonine methyl ester and benzoate. C. acidovorans was capable of growth on benzoate at concentrations below 5 mM but was unable to metabolize ecgonine methyl ester. P. fluorescens MBER was capable of growth on either benzoate as the sole source of carbon or ecgonine methyl ester as the sole source of carbon and nitrogen. P. fluorescens MBER was found to initiate the degradation of ecgonine methyl ester via ecgonine, pseudoecgonine, and pseudoecgonyl-coenzyme A. Subcellular studies resulted in the identification of an ecgonine methyl esterase, an ecgonine epimerase, and a pseudoecgonyl-coenzyme A synthetase which were induced by growth on ecgonine methyl ester or ecgonine. Further metabolism of the ecgonine moiety is postulated to involve nitrogen debridging, with the production of carbonyl-containing intermediates. 相似文献
20.
The cascade of reactive nitrogen species generated from nitric oxide causes modification of proteins, lipids, and nucleic acids in a wide range of organisms. 3-Nitrotyrosine is one of the most common products of the action of reactive nitrogen species on proteins. Although a great deal is known about the formation of 3-nitrotyrosine, the subsequent metabolism of this compound is a mystery. Variovorax paradoxus JS171 and Burkholderia sp. strain JS165 were isolated from soil slurries when 3-nitrotyrosine was provided as the sole carbon, nitrogen, and energy source. During growth on 3-nitrotyrosine stoichiometric amounts of nitrite were released along with approximately one-half of the theoretically available ammonia. The catabolic pathway involving oxidative denitration is distinct from the pathway for tyrosine metabolism. The facile isolation and the specific, regulated pathway for 3-nitrotyrosine degradation in natural ecosystems suggest that there is a significant flux of 3-nitrotyrosine in such environments. 相似文献