首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fed-batch culture of Bacillus thuringiensis in a modified airlift reactor has been developed by using adaptive control of glucose concentration in the reactor. The glucose concentration was estimated via a correlation equation between carbon dioxide production rate and glucose consumption rate. The estimated glucose concentration as the output variable was fed back to computer for calculation of substrate addition. The modified reactor was an airlift reactor with a net draft tube. The airlift reactor had high oxygen transfer rate and low shear stress which were important factors for production of thuringiensin. Fed-batch culture of Bacillus thuringiensis in the modified airlift reactor provided significant improvement of thuringiensin production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
The hydrodynamics (sectional gas holdup and liquid velocities) and oxygen transfer performance of a conventionally operated multiconfigurable pilot scale (0.25?m3) concentric airlift bioreactor containing baker's yeast were significantly improved by operating a marine propeller to draw liquid down the draft tube and aid recirculation at the base of the vessel. Propeller operation reduced the severe DOT heterogeneity of the reactor, which gave DOT values below 1% air saturation in the riser, by producing DOTs above 40% around the vessel at maximum energy dissipation rate. As a consequence the overall oxygen uptake rate (OUR) of the baker's yeast increased up to 3 fold with the total energy dissipation rate into the reactor until the lowest DOTs of the vessel were at or above 10%. The different degrees of heterogeneity generated by the two reactor configurations enabled the reactor to be used as a scale down tool to study the impact of heterogeneity on the physiology of fermentation broths. Comparison of the hydrodynamics and oxygen transfer between tall and short reactor heights revealed that the faster circulation times of the short reactor produced a greater improvement in the OUR with propeller operation even though similar DOT changes occurred around both sizes of reactor. This indicated that the yeast cells were responding to the rapid DOT changes around the vessel.  相似文献   

3.
Steady state metabolic parameters for hybridoma cell line H22 were determined over a wide range of cell densities and specific growth rates in a filtration based homogeneous perfusion reactor. Operating the reactor at perfusion rates of 0.75, 2.0, and 2.9 day(-1)(each at four different specific growth rates), viable cell densities as high as 2 x 10(7) cells/mL were obtained. For the cell line under investigation, the specific monoclonal antibody production rate was found to be a strong function of the viable cell density, increasing with increasing cell density. In contrast, most of the substrate consumption and product formation rates were strong functions of the specific growth rate. Substrate metabolism became more efficient at high cell densities and low specific growth rates. The Specific rates of metabolite formation and the apparent yields of lactate from glucose and ammonia from glutamine decreased at low specific growth rates and high cell densities. While the specific oxygen consumption rate was independent of the specific growth rate and cell density, ATP production was more oxidative at lower specific growth rate and higher cell density. These observed shifts are strong indications of the production potential of high-density perfusion culture. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
Bacterial cellulose (BC) production was realized in a batch cultivation of Acetobacter xylinum subsp. sucrofermentans BPR2001 in a 50-L internal-loop airlift reactor. When the bacterium was cultivated with air supply, 3.8 g/L of BC was produced after 67 hours. When oxygen-enriched gas was supplied, the concentration of BC was doubled and the production rate of BC was 0.116 g/L. h, which was two times higher than that of air-supplied culture and comparable to that in a mechanically agitated stirred-tank fermentor. Bacterial cellulose produced by the airlift reactor formed a unique ellipse pellet (BC pellet), different from the fibrous form which was produced in an agitated stirred-tank fermentor. The BC-pellet suspension was demonstrated to have a higher volumetric oxygen transfer coefficient than the fibrous BC suspension in a 50-L internal-loop airlift reactor. The mixing time of BC-pellet suspension in the airlift reactor was also shorter than that in water.  相似文献   

5.
SPA::EcoRI fusion protein was produced by Escherichia coli JM103 carrying the multicopy expression plasmid pMTC48, the multicopy repressor plasmid pRK248, and the multicopy protection plasmid pEcoR4 in a 60-L working volume airlift tower loop reactor on M9 minimal medium with glucose. Cell mass concentration, total cell count, number of colony-forming units, specific growth rate, yield coefficient, and metabolite (acetate, pyruvate, succinate, lactate, ethanol) concentrations were monitored during the growth phase and gene expression. Gene expression was induced by temperature shift or chemically by isopropyl-thiogalactosidase in the airlift tower loop reactor (ALTR) at constant cultivation time and in a small stirred tank reactor at different cultivation times. During induction, the cultivation medium was supplemented with concentrated Luria-Bertani (LB) medium. The intracellular enzyme activity was evaluated as a function of the time after the start of the induction. It was found that the reduction of the glucose concentration and increase of the dissolved oxygen concentration reduced the acetate produced and increased the intracellular enzyme activity. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
Rates of oxygen uptake, growth and alkaloid production by hairy roots in submerged culture were investigated using a recirculation reactor allowing operation at high liquid velocities for removal of hydrodynamic boundary layers. Measurements were performed at dissolved oxygen tensions of 31-450% air saturation. Critical oxygen concentrations for Atropa belladonna hairy roots were above air saturation, viz. 100-125% air saturation for oxygen uptake and 150% air saturation for growth, demonstrating that these roots cultivated in reactors with air sparging are oxygen-limited. The critical oxygen tension for oxygen uptake by Solanum aviculare hairy roots was 75% air saturation. Both the specific oxygen uptake rate and specific growth rate of A. belladonna hairy roots were dependent on the mass (g dry weight) of roots present; even in the absence of boundary layers, growth did not remain exponential over the entire culture period. Cryo-scanning electron microscopy showed that hairy roots grown submerged in liquid medium were covered with thick layers of hydrated mucilage and root hairs, representing a significant additional barrier to oxygen transfer. Roots protruding out of the liquid medium showed no evidence of mucilage accumulation. The specific oxygen demand of A. belladonna root tips was 3.3-11.5 times higher than for the remainder of the roots, the ratio increasing as the dissolved oxygen tension was reduced. Specific growth rates, biomass yields from sugar, and atropine levels were maximum at around 150% air saturation, but decreased significantly with oxygen concentrations above ca. 200%.  相似文献   

7.
Acid proteinase production using filamentous fungus Humicola lutea 120-5 was studied under batch and continuous fermentation conditions in an airlift bioreactor. A comparison with proteinase production by fungal cells, cultivated in stirred tank bioreactor was made. The process performance in both fermentation devices was similar with respect to substrate utilization, biomass, and enzyme concentration. Continuous acid proteinase production was achieved for 14 days at an optimal dilution rate of 0.05/h with maximum specific activity of 90 U/mg DW of mycelia and yield of 38 U/mg glucose. The volumetric productivity (50 U/ml. h) was approximately 3 times higher than this of the batch system. All continuous experiments were carried out without any bacterial contamination, due to the low pH (3.0-3.5) during the process. The "pellet" type growth of the fungus in the airlift reactor prevented the system from plugging with filaments.  相似文献   

8.
Airlift bioreactor operations have been studied for the growth-associated production of secondary metabolites from plant cell suspension cultures. The model system used in this work was Thalictrum rugosum producing berberine, an isoquinoline alkaloid. The airlift system was well suited for growth of Thalictrum cell suspension cultures unless the cell density was high. At high cell density, the airlift system with a draught tube was not adequate due to large aggregates clogging the recirculation paths. This was overcome by use of a cell scraper in the reactor. For berberine production, gas-stripping also played a significant role and it was discovered that CO(2) and ethylene were important for product formation. By supplying a mixture of CO(2) and ethylene into the airlift system, the specific berberine content was increased twofold. It is evident that continuous gas sparging was harmful for the production of berberine without supplementation with other gases.  相似文献   

9.
The optimal agitation rate for production of swainsonine from Metarhizium anisopliae grown in batch stirred tank reactors (2 to 20 l) was 400 rpm with a mixed hyphal and pelleted morphology where the specific swainsonine production rate was 9×10–2 mg g–1 cell dry wt h from 87 to 142 h. Culture of the fungus in a 6-l airlift reactor produced loose pellets and the production of swainsonine started at least 24 h earlier than in the stirred tank reactor. The final yield (5.9 mg swainsonine g–1 cell dry wt) after 168 h in the airlift reactor was 18% less than those obtained in the stirred tank reactor with an agitation rate of 400 rpm.  相似文献   

10.
Hydrodynamic and oxygen transfer comparisons were made between two ring sparger locations, draft tube and annulus, in a concentric pilot scale airlift reactor with a baker's yeast suspension. Sectional hydrodynamic measurements were made and a mobile DOT probe was used to characterise the oxygen transfer performance through the individual sections of the reactor. The hydrodynamic performance of the reactor was improved by using a draft tube ring sparger rather than the annulus ring sparger. This was due to the influence of the ratio of the cross sectional area of the downcomer and riser (A D/AR) in conjunction with the effect of liquid velocity and a parameter,C 0, describing the distribution of the liquid velocity and gas holdup across the riser on the bubble coalescence rates. The mixing performance of the reactor was dominated by the frequency of the passage of the broth through the end sections of the reactor. An optimum liquid height above the draft tube, for liquid mixing was demonstrated, above which no further improvement in mixing occurred. The liquid velocity and degree of gas entrainment showed little dependency on top section size for both sparger configurations. Extreme dissolved oxygen heterogeneity was demonstrated around the vessel with both sparger configurations and was shown to be detrimental to the oxygen uptake rate of the baker's yeast. Dissolved oxygen tensions below 1% air saturation occurred along the length of the riser and then rose in the downcomer. The greater oxygen transfer rate in the downcomer than in the riser was caused by the combined effects of a larger slip velocity in the downcomer which enhancedk La and gas residence time, high downcomer gas holdup, and the change in bubble size distribution between the riser and downcomer. The position of greatest oxygen transfer rate in the downcomer was shown to be affected by the reactor from the influence on downcomer liquid linear velocity. UCL is the Biotechnology and Biological Sciences Research Council sponsored Advanced Centre for Biochemical Engineering and the Council's support is greatly acknowledged.  相似文献   

11.
Gluconobacter melanogenus 3293 converts glycerol to dihydroxyacetone(DHA) during exponential growth on a yeast extract-phosphate medium at pH 7. The efficiency of this conversion in 25-liter batch fermentations has been found to increase over threefold, when oxygen tension is controlled by increasing the partial pressure of oxygen in the aeration. Conversion of glycerol to DHA does not occur under oxygen-limited fermentation conditions. When the dissolved oxygen tension was maintained at 0.05 atmospheres (using oxygen-enriched air), quantitative conversion of up to 100 g of glycerol/liter to DHA was obtained in 33 h. The amount of glycerol converted can be increased without increasing impeller speed or aeration rate. This increase is not the result of increased production of cell mass. The specific conversion of glycerol to DHA increased from 12.2 g of DHA/g of cell mass at the point of maximum conversion to 35.8 with oxygen enrichment. This increased specific production occurred even though the specific growth rate during the period of oxygen enrichment decreased from 0.23 to 0.06/h.  相似文献   

12.
Oxygen transfer in liquids   总被引:1,自引:0,他引:1  
In the laboratory-type airlift tower reactor oxygen transfer from air in tap water and/or polyacrylamide solutions (Neuperm WF) was studied. In order to characterize the system, volumetric coefficient of oxygen transfer was determined by the gassing-out method. Two arrangements of the airlift tower reactor were compared, namely the reactor with and without motionless mixer. In addition, mean relative gas holdup and gas power output were determined for both arrangements.  相似文献   

13.
《Biological Wastes》1990,31(4):251-266
Aerobic digestion of primary and secondary sludges was studied in airlift bioreactors at mesophilic and thermophilic temperatures. The experimental studies were conducted with a laboratory U-shape airlift reactor (operating volume 23 liters) and in a pilot U-shape airlift reactor of 1150 liters operating volume. In the laboratory reactor, with cold (6°C) and concentrated (3–4% solids) feed of primary and secondary municipal sludge, a 30% volatile suspended solids (VSS) reduction was achieved with a hydraulic retention time (HRT) of 2·5 days. A VSS loading rate of 8·2 kg VSS/m3/day was achieved. This loading is comparable to that obtained in a pure-oxygen sparged, mixed reactor.In the pilot-plant reactor at mesophilic temperature (31–33°C), a VSS loading rate of 7·9 kg VSS/m3/day and a VSS reduction of 40% were achieved with a HRT of 4 days.  相似文献   

14.
Following a consideration of the prerequisites for reactor comparison and the fundamental differences between stirred tank and airlift tower loop reactors, their performances are compared for the production of secondary metabolites: penicillin V by Penicillium chrysogenum, cephalosporin C by Cephalosporium acremonium, and tetracycline by Streptomyces aureofaciens. In stirred tank reactors, cell mass concentrations, volumetric productivities, and specific power inputs are higher than in airlift tower loop reactors. In the latter, efficiencies of oxygen transfer are higher, and specific productivities with regard to power input, substrate and oxygen consumptions, and yield coefficients of product formation with regard to substrate and oxygen consumptions are considerably higher than in stirred tank reactors. The prerequisites for improved performance are discussed.  相似文献   

15.
Gas hold-up and the oxygen transfer in the zones of the internal loop airlift reactor with rectangular cross-section was studied. It was found, that the downcomer to the riser gas hold-up ratio depends on the gas flow rate, the physicochemical properties of the system and on the reactor height. The ratio of the downcomer mass transfer coefficient to the global mass transfer coefficient was less than 6%. The ratio of the downcomer to the global mass transfer coefficient slightly increased with increase of the gas flow rate and decreased with increase of the liquid viscosity. The proposed correlation for the global overall mass transfer coefficient predicts the experimental data well within 16.6% deviation. It was confirmed that the reactor height is the important parameter for a design and a scale-up of the airlift reactors.  相似文献   

16.
Summary Cephalosporin C was produced by Cephalosporium acremonium in a 60 l airlift loop reactor on complex medium (with 30 kg/m3 peanut flour) in fed-batch operation. A final product concentration of 5 kg/m3 and a maximum productivity of 45 g/m3 h were attained. On-line analysis was used to determine ammonia, methionine, phosphate, reducing sugar and cephalosporin C by an autoanalyser, glucose by a flow injection analyser and cephalosporin C, penicillin N, deacetoxycephalosporin C, deacetylce-phalosporin C and methionine by HPLC. The volumetric productivity of the stirred tank reactor was higher than that of the airlift reactor because of differences in cell concentration. Specific productivities in relative to cell mass were similar in the two reactors. The substrate yield coefficient in the airlift reactor was twice that in the stirred tank reactor.Nomenclature E o2 efficiency of oxygen transfer with regard to the specific power input - K La volumetric mass transfer coefficient - OTR oxygen transfer rate - P power input - PR volumetric productivity of CPC - q a volumetric aeration rate/broth volume (vvm) - SPR specific productivity with regard to RNA - V L broth volume in reactor - z relative height of the aerated reactor  相似文献   

17.
《Process Biochemistry》1999,34(4):329-333
This paper deals with the studies on Cephalosporin-C production in a lab-scale airlift reactor using Cephalosporium acremonium. Various growth modes, viz. pellets and Siran supported bioparticles were used to improve the process over conventional free mycelial fermentation. Cephalosporin-C production was significantly improved by using bioparticles over the free mycelial culture, probably due to the enhanced mass transfer in the fermentation broth. However, the biofilm of the bioparticles became unstable as the fermentation proceeded, and increase in the free cells in the broth occurs. The maximum specific growth rate of free cells, pellets and Siran carrier were observed to be 0·037, 0·033 and 0·045 h−1, respectively. The oxygen transfer coefficient also improved for the immobilised modes (100 h−1, 70 h−1 for Siran carrier and pellets) and thereby enhanced specific antibiotic productivity, 18–28% were observed.  相似文献   

18.
Production of tPA in recombinant CHO cells under oxygen-limited conditions   总被引:1,自引:0,他引:1  
Animal cell bioreactors are often limited by the oxygen supply. The reduction in oxygen consumption per cell that occurs under hypoxic conditions may be exploited as a method for increasing reactor capacity if additional glucose is provided to offset increased glycolytic activity. The effects of oxygen deprivation on recombinant tPA (tissue-type plasminogen activator) production were investigated using midexponential and slowly growing CHO cells. The specific oxygen consumption rate can be reduced by at least 50% (mild hypoxic conditions) without affecting the cell growth rate, maximum cell concentration, tPA production rate, or tPA quality (as characterized by the tPA-specific activity and SDS-PAGE analysis). This suggests that mild-hypoxic conditions (with sufficient glucose) can be used to double the cell concentration and volumetric tPA production rate (at a constant volumetric oxygen supply rate) without sacrificing product quality. However, anoxic conditions should be avoided. When slowly growing cultures were exposed to anoxia, the tPA production rate decreased by 80% without affecting tPA quality. However, when midexponential cultures were exposed to anoxia, the drop in tPA production was accompanied by a decrease in tPA quality that ranged from a 40% decrease in tPA specific activity to extensive tPA degradation. (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
Based on the experimental investigations with H. polymorpha and Methylomonas M 15 in bench-scale airlift tower-loop reactors, a general distributed parameter model was developed and used to simulate to cultivation process in a 40-m-high production reactor. This general model was simplified with regard to the gas phase and loop balances and was employed to optimize cell productivity and/or profit in a 20-m-high pilot-plant airlift tower-loop reactor. Maximum cell productivity always occurs in the oxygen-transfer-limited growth range. In case of a high "penalty factor" for nonconsumed substrate, maximum profit is attained at the boundary between substrate and oxygen-transfer-limited growth. Oxygen-transfer limitation exists in the lower half of the tower, whereas in the upper half, substrate limitation prevails. The longitudinal dissolved oxygen concentration passes a minimum in this case as has been determined experimentally in the bench-scale column. The simulation results agree fairly well with the data measured in the pilot plant.  相似文献   

20.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号