首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epidemic outbreak of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus (CoV), designated SARS-CoV. The RNA genome of SARS-CoV is complexed by the nucleocapsid protein (N) to form a helical nucleocapsid. Besides this primary function, N seems to be involved in apoptotic scenarios. We show that upon infection of Vero E6 cells with SARS-CoV, which elicits a pronounced cytopathic effect and a high viral titer, N is cleaved by caspases. In contrast, in SARS-CoV-infected Caco-2 cells, which show a moderate cytopathic effect and a low viral titer, this processing of N was not observed. To further verify these observations, we transiently expressed N in different cell lines. Caco-2 and N2a cells served as models for persistent SARS-CoV infection, whereas Vero E6 and A549 cells did as prototype cell lines lytically infected by SARS-CoV. The experiments revealed that N induces the intrinsic apoptotic pathway, resulting in processing of N at residues 400 and 403 by caspase-6 and/or caspase-3. Of note, caspase activation is highly cell type specific in SARS-CoV-infected as well as transiently transfected cells. In Caco-2 and N2a cells, almost no N-processing was detectable. In Vero E6 and A549 cells, a high proportion of N was cleaved by caspases. Moreover, we examined the subcellular localization of SARS-CoV N in these cell lines. In transfected Vero E6 and A549 cells, SARS-CoV N was localized both in the cytoplasm and nucleus, whereas in Caco-2 and N2a cells, nearly no nuclear localization was observed. In addition, our studies indicate that the nuclear localization of N is essential for its caspase-6-mediated cleavage. These data suggest a correlation among the replication cycle of SARS-CoV, subcellular localization of N, induction of apoptosis, and the subsequent activation of caspases leading to cleavage of N.  相似文献   

2.
The mixed-lineage leukemia gene (MLL, ALL1, HRX) encodes a 3,969-amino-acid nuclear protein homologous to Drosophila trithorax and is required to maintain proper Hox gene expression. Chromosome translocations in human leukemia disrupt MLL (11q23), generating chimeric proteins between the N terminus of MLL and multiple translocation partners. Here we report that MLL is normally cleaved at two conserved sites (D/GADD and D/GVDD) and that mutation of these sites abolishes the proteolysis. MLL cleavage generates N-terminal p320 (N320) and C-terminal p180 (C180) fragments, which form a stable complex that localizes to a subnuclear compartment. The FYRN domain of N320 directly interacts with the FYRC and SET domains of C180. Disrupting the interaction between N320 and C180 leads to a marked decrease in the level of N320 and a redistribution of C180 to a diffuse nuclear pattern. These data suggest a model in which a dynamic post-cleavage association confers stability to N320 and correct nuclear sublocalization of the complex, to control the availability of N320 for target genes. This predicts that MLL fusion proteins of leukemia which would lose the ability to complex with C180 have their stability conferred instead by the fusion partners, thus providing one mechanism for altered target gene expression.  相似文献   

3.
CD4, the cell-surface receptor for the human immunodeficiency virus (HIV), is a member of the immunoglobulin (Ig) gene superfamily. It contains four extracellular sequences homologous to Ig VL domains. The first of these (V1) is sufficient for binding to HIV; however, the structural basis for this binding has yet to be elucidated. While several models for the structure of Ig-like domains in CD4 have been proposed on the basis of crystal structures of Ig VL domains, direct evidence that CD4 and VL domains fold similarly has not been obtained. To produce individual domains of CD4 for structural studies, we used molecular fusions of such domains with Ig heavy chain (CD4 immunoadhesins), which are very efficiently expressed and secreted in mammalian cells and can be easily isolated in single-step purification with protein A. Since these fusion molecules are antibody-like homodimeric proteins, we investigated the possibility that they might be cleaved enzymatically to produce Fd-like and Fc fragments. We found that cleavage with papain releases an Fd-like fragment containing the V1 and V2 CD4 domains; this fragment fully retains the ability to bind to the HIV-1 envelope glycoprotein gp120 and to block HIV infection in vitro. Moreover, folding of the CD4 domains in the Fd-like fragment and in the parent immunoadhesin is indistinguishable, as indicated by circular dichroism. Spectral analysis of the Fd-like fragment suggests that secondary structure content is identical with that predicted from the known structure of Ig VL domains; this directly supports the hypothesis that the V1 and V2 domains of CD4 fold similarly to Ig VL domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Smac/DIABLO is a mitochondrial protein that potentiates some forms of apoptosis, possibly by neutralizing one or more members of the IAP family of apoptosis inhibitory proteins. Smac has been shown to exit mitochondria and enter the cytosol during apoptosis triggered by UV- or gamma-irradiation. Here, we report that Smac/DIABLO export from mitochondria into the cytosol is provoked by cytotoxic drugs and DNA damage, as well as by ligation of the CD95 death receptor. Mitochondrial efflux of Smac/DIABLO, in response to a variety of pro-apoptotic agents, was profoundly inhibited in Bcl-2-overexpressing cells. Thus, in addition to modulating apoptosis-associated mitochondrial cytochrome c release, Bcl-2 also regulates Smac release, suggesting that both molecules may escape via the same route. However, whereas cell stress-associated mitochondrial cytochrome c release was largely caspase independent, release of Smac/DIABLO in response to the same stimuli was blocked by a broad-spectrum caspase inhibitor. This suggests that apoptosis-associated cytochrome c and Smac/DIABLO release from mitochondria do not occur via the same mechanism. Rather, Smac/DIABLO efflux from mitochondria is a caspase-catalysed event that occurs downstream of cytochrome c release.  相似文献   

5.
Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin β is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin β and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified as a substrate for meprin β. Processing of APP by meprin β was subsequently validated using in vitro and in vivo approaches. N-terminal APP fragments of about 11 and 20 kDa were found in human and mouse brain lysates but not in meprin β(-/-) mouse brain lysates. Although these APP fragments were in the range of those responsible for caspase-induced neurodegeneration, we did not detect cytotoxicity to primary neurons treated by these fragments. Our data demonstrate that meprin β is a physiologically relevant enzyme in APP processing.  相似文献   

6.
7.
Amyloid beta-protein (A beta) is the main constituent of senile plaques in Alzheimer's disease and is derived by proteolysis from the amyloid precursor protein (APP). Generation and secretion of both A beta 40 and A beta 42 isoforms depend largely on internalization of APP and occurs mainly in the endocytic pathway. Evidence has also been presented (Gervais, F. G., Xu, D., Robertson, G. S., Vaillancourt, J. P., Zhu, Y., Huang, J., LeBlanc, A., Smith, D., Rigby, M., Shearman, M. S., Clarke, E. E., Zheng, H., Van der Ploeg, L. H. T., Ruffolo, S. C., Thornberry, N. A., Xanthoudakis, S., Zamboni, R. J., Roy, S., and Nicholson, D. W. (1999) Cell, 97, 395--406) that caspase cleavage of APP at its cytosolic tail affects its processing such that it is redirected to a more amyloidogenic pathway, resulting in enhanced A beta generation. However, caspase cleavage of APP also results in loss of its endocytosis signal (YENP), an event that would predict a decline in internalization and a concomitant decrease, not an increase, in A beta generation. In the present work, we examined whether caspase cleavage of APP is relevant to amyloidogenesis. We found that 1) caspase cleavage of APP results in reduced internalization and, accordingly, a decline in A beta secretion; 2) masking of the caspase site in APP did not affect A beta levels and, 3) caspase activation in cells by serum withdrawal did not increase A beta secretion. Thus, caspase cleavage of APP is unlikely to play a direct role in amyloidogenesis.  相似文献   

8.
Smac/DIABLO is a mitochondrial protein that is proteolytically processed and released during apoptosis along with cytochrome c and other proapoptotic factors. Once in the cytosol, Smac protein binds to inhibitors of apoptosis (IAP) proteins and disrupts the ability of the IAPs to inhibit caspases 3, 7, and 9. The requirement for mitochondrial processing and release has complicated efforts to delineate the effect of Smac overexpression and IAP inhibition on cell death processes. In this report, we document a novel expression system using ubiquitin fusions to express mature, biologically active Smac in the cytosol of transfected cells. Processing of the ubiquitin-Smac fusions is rapid and complete and generates mature Smac protein initiating correctly with the Ala-Val-Pro-Ile tetrapeptide sequence that is required for proper function. The biological activity of this exogenous protein was demonstrated by its interaction with X-linked IAP, one of the most potent of the IAPs. The presence of mature Smac was not sufficient to trigger apoptosis of healthy cells. However, cells with excess Smac protein were greatly sensitized to apoptotic triggers such as etoposide exposure. Cancer cells typically display deregulated apoptotic pathways, including Bcl2 overexpression, thereby suppressing the release of cytochrome c and Smac. The ability to circumvent the requirement for mitochondrial processing and release is critical to developing Smac as a possible gene therapy payload in cancer chemosensitization.  相似文献   

9.
10.
Accumulation of transactive response DNA binding protein (TDP-43) fragments in motor neurons is a post mortem hallmark of different neurodegenerative diseases. TDP-43 fragments are the products of the apoptotic caspases-3 and -7. Either excessive or insufficient cellular Ca2+ availability is associated with activation of apoptotic caspases. However, as far as we know, it is not described whether activation of caspases, due to restricted intracellular Ca2+, affects TDP-43 cleavage. Here we show that in various cell lineages with restricted Ca2+ availability, TDP-43 is initially cleaved by caspases-3 and -7 and then, also by caspases-6 and -8 once activated by caspase-3. Furthermore, we disclose the existence of a TDP-43 caspase-mediated fragment of 15 kDa, in addition to the well-known fragments of 35 and 25 kDa. Interestingly, with respect to the other two fragments this novel fragment is the major product of caspase activity on murine TDP-43 whereas in human cell lines the opposite occurs. This outcome should be considered when murine models are used to investigate TDP-43 proteinopathies.  相似文献   

11.
Several human inhibitor of apoptosis (IAP) family proteins function by directly inhibiting specific caspases in a mechanism that does not require IAP cleavage. In this study, however, we demonstrate that endogenous XIAP is cleaved into two fragments during apoptosis induced by the tumor necrosis factor family member Fas (CD95). The two fragments produced comprise the baculoviral inhibitory repeat (BIR) 1 and 2 domains (BIR1-2) and the BIR3 and RING (BIR3-Ring) domains of XIAP. Overexpression of the BIR1-2 fragment inhibits Fas-induced apoptosis, albeit at significantly reduced efficiency compared with full-length XIAP. In contrast, overexpression of the BIR3-Ring fragment results in a slight enhancement of Fas-directed apoptosis. Thus, cleavage of XIAP may be one mechanism by which cell death programs circumvent the anti-apoptotic barrier posed by XIAP. Interestingly, ectopic expression of the BIR3-Ring fragment resulted in nearly complete protection from Bax-induced apoptosis. Use of purified recombinant proteins revealed that BIR3-Ring is a specific inhibitor of caspase-9 whereas BIR1-2 is specific for caspases 3 and 7. Therefore XIAP possesses two different caspase inhibitory activities which can be attributed to distinct domains within XIAP. These data may provide an explanation for why IAPs have evolved with multiple BIR domains.  相似文献   

12.
In hepatocytes the DNA repair enzyme poly(ADP-ribose)polymerase (PARP) is not proteolytically cleaved during apoptosis. The reason for this was investigated using a cell-free system that consisted of isolated nuclei from hepatocytes or thymocytes and cytosolic extracts from hepatocytes or thymocytes undergoing apoptosis. It was found that liver PARP is resistant to proteolytic cleavage by the caspases present in the cytosolic extracts. Furthermore, liver PARP was not cleaved by recombinant human caspase-3. It is concluded that PARP proteolysis cannot be used as a marker for hepatocyte apoptosis.  相似文献   

13.
Cleavage of structural proteins by caspases has been associated with the severe morphological changes occurring during the apoptotic process. One of the proteins regulating the connection of the actin filament with cadherins in a cell-cell adhesion complex is beta-catenin. During apoptosis, both an N-terminal and a small C-terminal part are removed from beta-catenin. Removal of the N-terminal part may result in a disconnection of the actin filament from a cadherin cell-cell adhesion complex. We demonstrate that caspase-8, -3 and -6 directly proteolyse beta-catenin in vitro. However, the beta-catenin cleavage products generated by caspase-8 were different from those generated by caspase-3 or caspase-6. Caspase-1, -2, -4/11 and -7 did not or only very inefficiently cleave beta-catenin. These data suggest that activation of procaspase-3, -6 or -8 by different stimuli in the cell might result in a differential proteolysis of beta-catenin.  相似文献   

14.
The substrate specificity of phospholipid/Ca2+-dependent protein kinase (protein kinase C) was studied using synthetic peptides, in particular those corresponding to the amino acid sequence around serine 115 in bovine myelin basic protein (MBP). It was found that MBP (104-118) and MBP (104-123) were substrates for the enzyme, with apparent Km values of 14 and 10 microM, respectively. Neither MBP (111-118) nor MBP (111-123) were phosphorylated, indicating that an additional segment of sequence extending toward the N terminus, but not toward the C terminus, was essential for the substrate activity of the peptides. Of the alanine-substituted analogs examined, [Ala 105] MBP (104-118) was comparable to the parent peptide, whereas [Ala 107] MBP (104-118) and [Ala 113] MBP-(104-118) were much poorer substrates. These findings indicated that lysine 105 was not essential, but both arginine 107 and arginine 113 were important specificity determinants. Initial studies revealed that [Ala 113] MBP (104-118) inhibited phosphorylation by the enzyme of the parent peptide and, to a lesser extent, the intact MBP(1-170). Serine 115 was the only site phosphorylated in the analog peptides [Ala 105] MBP (104-118) and [Ala 107]MBP (104-118). In the parent peptide, serine 115 was the initial site of phosphorylation but after prolonged phosphorylation other sites became phosphorylated (serine 110 and/or serine 112), further supporting the concept that arginine residues act as essential substrate specificity determinants for phospholipid/Ca2+-dependent protein kinase.  相似文献   

15.
16.
Caspases, a unique family of cysteine proteases involved in cytokine activation and in the execution of apoptosis can be sub-grouped according to the length of their prodomain. Long prodomain caspases such as caspase-8 and caspase-9 are believed to act mainly as upstream caspases to cleave downstream short prodomain caspases such as caspases-3 and -7. We report here the identification of caspases as direct substrates of calcium-activated proteases, calpains. Calpains cleave caspase-7 at sites distinct from those of the upstream caspases, generating proteolytically inactive fragments. Caspase-8 and caspase-9 can also be directly cleaved by calpains. Two calpain cleavage sites in caspase-9 have been identified by N-terminal sequencing of the cleaved products. Cleavage of caspase-9 by calpain generates truncated caspase-9 that is unable to activate caspase-3 in cell lysates. Furthermore, direct cleavage of caspase-9 by calpain blocks dATP and cytochrome-c induced caspase-3 activation. Therefore our results suggest that calpains may act as negative regulators of caspase processing and apoptosis by effectively inactivating upstream caspases.  相似文献   

17.
18.
《Molecular cell》2022,82(20):3840-3855.e8
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   

19.
The prion protein is central to the disease pathogenesis of a variety of neurodegenerative diseases such as CJD. The protein is only able to initiate the disease process following post-translational modification. The main characteristic of this change is the ability of this altered isoform to polymerise. We wish to determine if altered cleavage of the protein could generate a protein fragment able to initiate polymerisation. During normal metabolic breakdown the protein is initially cleaved at a single site at around amino acid residue 111/112 in the mouse sequence. A second site before amino acid residue 90 has been postulated as an alternative cleavage point. We have provided evidence that hydrogen peroxide as low as 50 microM in the presence of copper, iron or manganese (but not nickel, magnesium or zinc) can cleave the recombinant protein near this site and requires a GXXH motif in the protein sequence. This reaction results in the production of 6 and 19 kDa fragments of the protein. This cleavage pattern occurs in prion proteins from different species (mouse, chicken and turtle) and is enhanced by modification of the octameric repeat region. The 19 kDa fragment produced by this reaction is protease sensitive. This fragment in a pure form caused the polymerisation of wild-type prion protein by a seeding mechanism. Therefore our results provide a possible mechanism by which altered cleavage of the prion protein could result in the kind of protein polymerisation associated with prion diseases.  相似文献   

20.
Cleavage of the two methionine residues in the glycoprotein trypsin inhibitor ovomucoid, variant O1, with CNBr resulted in two fragments whose mol.wts. were approx. 16 600 (fragment LS) and 11 000 (fragment M). Both fragments formed precipitates with antisera to ovomucoid. Fragment LS retained 56% of the trypsin-inhibitory activity of ovomucoid, but fragment M did not inhibit. After reduction and alkylation, the molecular weight of fragment M was unchanged, but fragment LS could be resolved into two segments of peptide chain with mol.wts. of approx. 12000 (fragment L) and 4700 (fragment S). Each of these peptides contained carbohydrate. Marked heterogeneity was observed in the hexose and hexosamine contents of fragment L. This may account for much of the heterogeneity in neutral carbohydrate occurring in ovomucoid preparations. It was found that fragment M was located at the N-terminal end, fragment S was in the centre and fragment L made up the C-terminal portion of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号