首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Experiment 1, 12 unmated cyclic ewes received twice-daily intrauterine injections on Days 12 to 14 of one of the following treatments: 1) ovine conceptus secretory proteins (oCSP) containing 25 mug of ovine trophoblast protein-1 (oTP-1) as determined by RIA; 2) 25 or 50 mug recombinant human interferon alpha1 (rhlFN); or 3) 1500 ug of serum proteins (oSP) from a Day-16 pregnant ewe (estrus = Day 0) per uterine horn. Ewes receiving oCSP had longer interestrous intervals (27 +/- 2 days; P<0.05) than ewes receiving oSP (17 +/- 2 days). Ewes receiving either dose of rhlFN had an interestrous interval of 16 +/- 2 days which did not differ (P>0.10) from that of oSP-treated ewes. In Experiment 2, 59 normally cycling ewes, mated on Day 0, received twice-daily intramuscular injections of either 2 mg recombinant bovine interferon alpha1 (rblFN) or placebo on Days 12 to 15 post estrus. On Day 16, pregnancy was confirmed by flushing a morphologically normal conceptus from the uterus. Pregnancy rates for rblFN-treated (80%) and placebo-treated (62%) ewes were not different (P>0.10). Uterine flushings and conceptus-conditioned medium were assayed for oTP-1. Total oTP-1 in conceptus-conditioned culture medium was higher (P<0.02) when conceptuses were from placebo-treated (104 +/- 14 mug/conceptus) than from rblFN-treated (56 +/- 12 mug/conceptus) ewes; while total oTP-1 in uterine flushings was similar (P>0.10) for placebo-treated (132 +/- 15 mug/conceptus) and rblFN-treated (147 +/- 17 mug/conceptus) ewes. The interval from mating to subsequent estrus following conceptus removal was 31 +/- 1 and 28 +/- 1 days for pregnant ewes treated with rblFN and placebo, respectively. Interestrous intervals for nonpregnant ewes were longer (P<0.02) for rblFN-treated (27 +/- 3 days) than for placebo-treated (18 +/- 2 days) ewes.  相似文献   

2.
After parturition, 10 mature spring-lambing fine-wool ewes producing twins were allotted to one of two treatments. Five ewes received sterile saline (i.v.) twice daily on Days 12 to 15 post partum (PP) while 5 ewes were treated similarly except each injection contained 500 mug somatostatin (SRIF). Jugular blood samples were collected at 15-min intervals for 1 h before to 3 h after morning treatment on Days 12 and 15 PP. Animals were observed twice daily for signs of estrus using vasectomized rams beginning on Day 31 PP and continuing until ewes returned to estrus. Interval from parturition to estrus (mean +/- SEM) was similar (P > 0.40) in ewes receiving SRIF (119 +/- 6.2 d) and in control ewes (113 +/- 6.2 d). Ewes receiving 500 mug SRIF had lower (P < 0.10) serum insulin during the first 45 min after treatment on Day 12 PP; however, on Day 15 PP, serum insulin did not differ (P > 0.40) between treatment groups. Serum growth hormone (GH) did not differ (P > 0.40) between treatment groups 1 h before treatment on Day 12 PP; however, ewes treated with SRIF had lower (P < 0.05) GH levels before treatment on Day 15 PP than control ewes (4.4 and 9.9 +/- 1.5 ng/ml, respectively). After administration of SRIF, serum GH was higher (P < 0.05) in SRIF-treated ewes than in controls (8.2 and 5.3 +/- 2.7 ng/ml, respectively) on Day 12 PP but no differences (P > 0.80) were noted between treatment groups on Day 15 PP. These data indicate that 500 mug SRIF given twice daily from Days 12 to 15 PP neither lowered serum GH nor influenced return to estrus in lactating fine-wool ewes.  相似文献   

3.
Interferon tau (IFNtau) is the antiluteolytic signal produced by the conceptus of ruminants. Intrauterine administration of recombinant ovine IFNtau suppresses expression of endometrial estrogen receptor (ER) and oxytocin receptor (OTR) in the luminal and superficial glandular epithelia to abrogate the production of luteolytic prostaglandin F(2alpha) (PGF(2alpha)) pulses. Subcutaneous (s.c.) injections of recombinant ovine (o) IFNtau appear to extend the interestrous interval by altering uterine PGF(2alpha) response to oxytocin. The present study tested the hypothesis that antiluteolytic effects of roIFNtau injected into the uterine lumen (paracrine) or s.c. (endocrine) are equivalent in suppressing expression of endometrial ER and OTR and inducing uterine expression of type I IFN-regulated Mx and ubiquitin cross-reactive proteins (UCRP). Sixteen cyclic ewes were fitted with uterine catheters on Day 5 (Day 0 = estrus), were assigned randomly to receive treatment with control proteins or roIFNtau (2 x 10(7) antiviral units/day) by either intrauterine or s.c. injections from Days 11 to 15, and were ovariohysterectomized on Day 16. Results indicated that expression of ER and OTR mRNAs in endometrial epithelium was suppressed by intrauterine but not by s.c. injections of roIFNtau. Intrauterine injections of roIFNtau increased expression of Mx and UCRP mRNA in the endometrium. Subcutaneous injections of roIFNtau increased endometrial Mx mRNA levels but not UCRP mRNA. Unexpectedly, intrauterine and s.c. injections of roIFNtau were equally effective in inducing expression of Mx and UCRP mRNA in the corpus luteum. Although s.c. injections of roIFNtau induced Mx mRNA in the endometrial epithelium, s.c. injections of roIFNtau did not abrogate activation of the uterine luteolytic mechanism by suppressing epithelial ER and OTR expression. Therefore, results of this study failed to support the assumption that endocrine roIFNtau mimics antiluteolytic effects of paracrine IFNtau to improve pregnancy rates in sheep.  相似文献   

4.
After parturition (Day 0), 31 mature spring-lambing, fine-wool ewes were randomly allotted to one of six groups. Treatments were lambs suckled (one or two) and ovine growth hormone (oGH; 0, 5 or 10 mg). Growth hormone was administered subcutaneously daily from Days 6 to 25. Milk characteristics were determined on Day 26. Ewes were observed for estrus beginning on Day 27. Serum insulin did not differ (P > 0.10) between suckling intensity before or after oGH treatment on Days 6, 15 or 25. Likewise, no difference (P > 0.10) in serum insulin was detected among ewes receiving 0, 5 or 10 mg oGH. Ewes suckling twins had higher (P < 0.05) serum growth hormone on Day 6 (before beginning oGH treatment) than ewes suckling single lambs. In ewes receiving 0, 5 and 10 mg oGH, serum growth hormone differed (P < 0.01) in a linear fashion 1 h after treatment was initiated on Day 6 and continued through Hour 6. Serum growth hormone on Days 15 and 25 differed among groups both before and after oGH was administered (P < 0.01). Suckling intensity did not affect (P > 0.10) milk or milk protein and fat yields; however, oGH increased (linear, P < 0.05) fat but did not affect milk or protein yields. Interval from parturition to estrus did not differ (P > 0.20) in ewes suckling single or twin offspring. Likewise, no differences (P > 0.20) in interval length were noted in ewes receiving 0, 5 or 10 mg oGH. Suckling intensity and oGH administration for 20 d had little effect on postpartum interval or milk characteristics during the first 30 d after lambing in fine-wool ewes.  相似文献   

5.
Intrauterine administration of the 5-lipoxygenase inhibitor nordihydroguariaretic acid (NDGA; 5 mg, bid) on Days 9-14 of the ovine estrous cycle (estrus = Day 0) delayed luteolysis and extended the duration of the estrous cycle (20+/-1, SD, vs. 16+/-1 days; P < 0.01). In control ewes, plasma concentrations of 13,14,dihydro-15-keto prostaglandin F2alpha increased significantly (P < 0.001) following i.v. administration of oxytocin (10 i.u.) on Day 14; in the nordihydroguariaretic acid-treated ewes, however, there was no such increase. In addition, concentrations of endometrial oxytocin receptors were significantly less (P < 0.01) in the nordihydroguariaretic acid-treated ewes (218+/-60 vs. 579+/-66 fmol/mg tissue). These results suggest that 5-lipoxygenase products of arachidonate metabolism may be involved in the control of ovine luteal function.  相似文献   

6.
Interferon tau (IFNT) is secreted by the trophectoderm of ruminant conceptuses during the peri-implantation period and serves an anti-luteolytic function. The question as to whether IFNT is superior as an anti-luteolytic agent to closely related Type I IFNs, such as IFN alpha (IFNA), which have a different function, remains unanswered. Thus, the aim of this study was to determine whether equivalent antiviral (AV) units of ovIFNA and ovIFNT are equipotent in extending estrous cycle length. Four distinct ovIFNA mRNA (ovIFNA1-4) were cloned from ovine lymphocytes. Recombinant ovine IFNs (ovIFNT4 and ovIFNA1) were prepared in the yeast Pichia pastoris. The AV activity of the purified IFNs was determined on a bovine cell line (MDBK) and on transformed ovine luminal uterine epithelial cells. Indwelling uterine catheters were fitted into crossbred ewes on Day 3 postestrus (Day 0 = estrus). Between Days 10 and 18 postestrus, ewes received twice-daily infusions of 0.7 x 10(7) IU of either ovIFNA1 or T4, plus serum albumin. Control ewes received serum albumin only. Daily blood samples were collected for progesterone determination, and ewes were monitored twice daily for estrus. Both ovIFNA (P = 0.04) and ovIFNT (P = 0.01) caused estrous cycle extension in nonpregnant ewes compared to controls when administered at equivalent AV doses. In conclusion, the uniqueness of IFNT as an anti-luteolytic agent most likely resides in its unique expression pattern rather than its special biopotency.  相似文献   

7.
Ubiquitin cross-reactive protein (UCRP) is a functional ubiquitin homolog synthesized by the ruminant endometrium in response to conceptus-derived interferon-tau (IFNtau). Progesterone is required for IFNtau to exert antiluteolytic actions on the endometrium. Therefore, this study was designed to determine whether progesterone is requisite for IFNtau induction of UCRP expression within the ovine uterus. Cyclic ewes were ovariectomized and fitted with intrauterine (i.u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5-24) and control serum proteins (CX, Days 11-24); 2) P and ZK 137.316 (ZK; progesterone receptor antagonist, Days 11-24) and CX proteins; 3) P and recombinant ovine IFNtau (roIFNtau, Days 11-24); or 4) P and ZK and roIFNtau. All ewes were hysterectomized on Day 25. In P-treated ewes, roIFNtau increased endometrial UCRP mRNA and protein levels. However, administration of ZK to ewes ablated roIFNtau induction of UCRP. Recombinant ovine IFNtau induced expression of UCRP mRNA in progestinized endometrial luminal (LE) and glandular (GE) epithelium as well as in both stratum compactum and spongiosum layers of the stroma (ST). Progesterone receptor protein was located in endometrial ST, but not in LE and GE from these ewes. Results support the hypothesis that progesterone is required for IFNtau induction of type I IFN-responsive genes, such as UCRP, in the ruminant uterus.  相似文献   

8.
This study examined the effects of progesterone and intrauterine injection of ovine conceptus secretory proteins (oCSP) on endometrial responsiveness to oxytocin. Twelve ewes were ovariectomized on day 4 of the cycle (oestrus = day 0) and assigned in a 2 x 2 factorial arrangement, to receive either 1.5 mg ovine serum proteins (SP) or oCSP containing 25 micrograms ovine trophoblast protein 1 (oTP-1) (by radioimmunoassay) in 1.5 mg total protein into each uterine horn, via catheters, twice a day on days 11, 12, 13 and 14. Ewes received 200 mg progesterone per day (i.m.) from day 4 to day 10 or 15. Oxytocin-induced prostaglandin F2 alpha was measured as 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) on days 11, 12, 13 and 14 in plasma from three integrated, 10 min (10 ml) blood samples (0-10, 10-20, 20-30 min) obtained after intravenous injection of 20 iu oxytocin, and in a pre-oxytocin (-10 to 0 min) sample collected via an indwelling jugular catheter. The pre-oxytocin samples were also assayed for progesterone. Oxytocin-induced turnover of inositol phosphate was determined in endometrium on day 15 after hysterectomy. In ewes receiving progesterone to day 10, plasma progesterone decreased from about 12 to 2 ng ml-1 (SEM +/- 2.6) during the treatment period (days 11-14), but remained high (12-20 +/- 2.6 ng ml-1) in ewes that received progesterone to day 15. Intrauterine injection of oCSP resulted in high basal concentrations of PGFM on days 12 and 13 compared with SP-treated ewes (P less than 0.01). Treatments with progesterone did not affect basal PGFM concentrations. Treatment with oCSP abolished oxytocin-induced endometrial secretion of prostaglandin only if progesterone was maintained to day 15 (P less than 0.01); in ewes receiving such treatment, oCSP inhibited (P less than 0.01), but SP did not inhibit, oxytocin-induced endometrial turnover of inositol phosphate (P less than 0.06), which was greater in ewes treated with progesterone to day 10 than in those treated to day 15 (P less than 0.05). Ewes that responded to oxytocin with increased PGFM exhibited increased oxytocin-stimulated turnover of inositol phosphate on day 15. These results indicate that the antiluteolytic action oTP-1 exerts on the endometrium requires progesterone and that this mechanism involves inhibition of oxytocin-stimulated turnover of inositol phosphate.  相似文献   

9.
Myometrial activity and plasma progesterone (P) and oxytocin (OT) were measured in early pregnant (n = 5) and cycling (n = 5) ewes. Electromyography (EMG) leads and jugular and inferior vena cava (IVC) catheters were surgically placed in ewes about 1 wk before data collection. When ewes returned to estrus, they were bred to either an intact or vasectomized ram. Continuous EMG data were collected, and blood samples were collected twice daily from day of estrus (Day 0) until Day 18. Ewes bred with an intact ram were checked surgically for pregnancy on Day 20. Computerized, quantitative analysis of EMG events showed no difference in signal from the right to left uterine horns, and no differences between pregnant and cycling ewes (p less than 0.05) until Days 14-18 when nonpregnant ewes returned to estrus and had increased EMG activity. The mean number of EMG events 180-900 s in length decreased in pregnant ewes, but this difference was not significant (p less than 0.05). Jugular plasma progesterone (P) levels confirmed corpus luteum (CL) formation in all ewes, and no differences in P between pregnant and nonpregnant ewes were measured until Days 14-18, when cycling ewes underwent luteolysis and pregnant ewes maintained CL. IVC plasma oxytocin concentrations were increased in pregnant ewes compared to concentrations in nonpregnant ewes on Days 5-13 (p less than 0.05), and the difference was largest at Day 6 (means +/- SEM pg/ml: pregnant = 68.7 +/- 13.9, nonpregnant = 30.9 +/- 19.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Chronically ovariectomized ewes were pretreated with progesterone and oestradiol to induce oestrus and randomly allocated into four treatment groups. Progesterone injections were given to Groups 1 and 2 on Days 1–12 and Groups 3 and 4 on Days 1–15. Ewes in Groups 2 and 4 were infused with conceptus secretory proteins (oCSP), via an intrauterine catheter, twice daily on Days 13–15. Ewes in Groups 1 and 3 were similarly infused, but with serum proteins (oSP). Endometrial oxytocin receptor (OTr) concentrations and oxytocin-induced 13,14-dihydro-15-keto-prostaglandin F (PGFM) release were measured on Day 16.Progesterone concentrations in ewes receiving 12 days of progesterone treatment declined after Day 12, reaching a nadir on Day 14. In contrast, plasma progesterone concentrations remained elevated until Day 16 in ewes receiving the extended progesterone treatment. On Day 16, endometrial OTr concentrations were significantly higher in ewes given 12 days of progesterone treatment than in ewes given 15 days of progesterone irrespective of the presence of oCSP or oSP. Treatment with oCSP significantly decreased oxytocin-induced PGFM release in ewes given 12 days of progesterone treatment compared with those ewes receiving oSP infusions. The extended 15 day progesterone treatment resulted in a further decrease in oxytocin-induced PGFM release in both oCSP and oSP infused ewes.These data indicate that, in steroid treated ovariectomized ewes, intrauterine infusion of oCSP will reduce oxytocin-induced PGFM response but not OTr concentrations. Progesterone appears to play a dominant role in the regulation of OTr as well as oxytocin-induced PGFM release.  相似文献   

11.
Eighty-four nulliparous ewes were used to examine the effect of short-term insulin treatment on feed intake and reproductive performance. Following estrus synchronization, ewes were observed for estrus (= Day 0) and were penned individually beginning on Day 7. Ewes were fed twice daily and feed intake was recorded. On Days 9 through 13, ewes were treated s.c. with 1 IU/kg BW insulin (n = 44) or an equivalent volume of saline (n = 40). On Day 14, ewes were placed with fertile rams and number of ewes in estrus (bred) was recorded. Thirty days post-breeding, ewes were checked for pregnancy via ultrasonography. Feed intake and percentage of ewes in estrus did not differ between saline- and insulin-treated ewes. Similarly, neither pregnancy rate (69 +/- 8.7% vs. 80 +/- 8.1%, respectively) nor lambing rate (61 +/- 8.9% vs. 78 +/- 8.4%, respectively) differed between treatments. The number of lambs born per ewe was, however influenced by a breed-group effect (P < 0.0002). Romanov ewes had more (P < 0.001) lambs than the other breed groups in the study. Therefore, treating well-nourished, nulliparous ewe lambs with insulin did not increase reproductive efficiency, possibly because the ewes were already at a maximal nutritional and/or reproductive state.  相似文献   

12.
The objective of this study was to examine conceptus development on Day 13 in ewes with estrous cycles of different durations. Ewes (n = 80) were screened according to the length of their estrous cycles. Subsequently, ewes that had either SHORT or LONG cycles were utilized (15.9 +/- 0.1 or 18.6 +/- 0.4 days; mean +/- SEM, p less than 0.01; 10 ewes per group). Jugular blood samples were collected twice daily from Days 0-6 after mating and then once a day until slaughter on Day 13. Concentrations of progesterone in plasma and amounts of ovine trophoblast protein-1 (oTP-1), protein, and prostaglandins (PG) E2 and F2 alpha (PGF2 alpha) in uterine flushings were determined. Concentrations of progesterone were greater (Day by treatment interaction, p less than 0.01) on Days 2-4 for ewes in the SHORT group. On Day 5 and thereafter, progesterone concentrations were not different between groups. More (p less than 0.05) oTP-1 and protein (8.1 +/- 1.3 micrograms and 1.8 +/- 0.3 micrograms versus 2.4 +/- 1.3 micrograms and 0.8 +/- 0.3 mg) were recovered from uterine flushings from ewes in the SHORT versus LONG groups, respectively. The ratio of PGE2:PGF2 alpha was higher (p less than 0.06) in flushings from ewes in the SHORT versus LONG group (1.4 +/- 0.2 versus 0.9 +/- 0.2, respectively). Conceptuses were classified by stage of morphological development. Conceptus development was accelerated (p less than 0.01) in ewes of the SHORT group, as shown by filamentous conceptuses recovered from 78% versus 0% of SHORT versus LONG ewes, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Follicular recruitment and luteal response to superovulatory treatment initiated relative to the status of the first wave of the ovine estrous cycle (Wave 1) were studied. All ewes (n = 25) received an intravaginal progestagen sponge to synchronize estrous cycles, and ewes were monitored daily by transrectal ultrasonography. Multiple-dose FSH treatment (total dose = 100 mg NIH-FSH-P1) was initiated on the day of ovulation (Day 0 group) in 16 ewes. In the remaining 9 ewes, FSH treatment was started 3 d after emergence of the largest follicle of Wave 1 (Day 3 group). Ewes received PGF(2alpha) with the last 2 FSH treatments to induce luteolysis. Daily blood samples were taken to determine progesterone profiles and to evaluate the luteal response subsequent to superovulation. The ovulation rate was determined by ultrasonography and correlated with direct observation of the ovaries during laparotomy 5 to 6 d after superovulatory estrus when the uterus was flushed to collect embryos. Results confirmed that follicular recruitment was suppressed by the presence of a large, growing follicle. In the Day 0 and Day 3 groups, respectively, mean numbers (+/- SEM) of large follicles (>/= 4 mm) recruited were 6.4 +/- 0.6 and 2.7 +/- 0.7 (P < 0.01) at 48 h after the onset of treatment, and 6.7 +/- 0.5 and 5.1 +/- 0.6 (P = 0.08) at 72 h after the onset of treatment. Ovulation rates were 5.6 +/- 0.8 and 3.3 +/- 0.8 in the respective groups (P < 0.05). The number of transferable embryos was 1.8 +/- 0.5 and 0.3 +/- 0.2 in the respective groups (P < 0.05). Short luteal phases (相似文献   

14.
The induction of estrus in 17 previously cycling nulliparous ewes, 9 to 10 months of age, was attempted with Medroxyprogesterone acetate (MAP) pessaries during the early anestrous period (March-April). Ewes were verified to be anestrous by the lack of estrous behavior in the presence of a vasectomized ram and by a radioimmunoassay for serum progesterone in two samples taken 7 days apart showing less than 1 ng/ml serum progesterone. Superovulation was attempted with injections of either FSH or FSH + LH. MAP vaginal pessaries remained in place for a period of 12 days and FSH was administered to all ewes (IM) at 12 hr intervals over a 3 day period; 5 mg was injected twice on day 11 after pessary insertion, followed by 4 and 3 mg injections twice daily on each succeeding day, for a total of 24 mg per ewe. Nine ewes were given 25 mg LH (IV) within 8 hrs after the onset of behavioral estrus in addition to FSH. Ewes were hand-mated to several rams at 12 hr intervals throughout the estrus period. Ovulation and fertilization rates were recorded for each ewe following midline laparotomy and embryo collection. All ewes were in estrus between 36 and 48 hrs after removal of the MAP pessaries. In ewes injected with FSH only, 8 of 8 ovulated with a mean ovulation rate of 6.0 +/- 4.4 and a fertilization rate of 70%. Nine of 9 ewes receiving both FSH + LH ovulated with a mean ovulation rate of 13.9 +/- 13.1 and a fertilization rate of 72%. Statistical analysis by Students t-test resulted in differences in number of ova recovered (P<.05) between FSH only and FSH + LH treated ewes and a trend towards increased ovulation rate in FSH + LH treated ewes. These results show that early seasonally anestrous ewes can be successfully induced and synchronized for estrus with MAP pessaries and the number of ova recovered is increased with the inclusion of LH in the superovulation regime.  相似文献   

15.
Two experiments were conducted to examine the effect of progestagen supplement 24h prior to intravaginal pessary withdrawal on reproductive performance of seasonal anestrous ewes. Ewes in each experiment were allocated to treatment and control and all were induced to estrus using either intravaginal MAP (Exp. 1; n=24) or CIDR-G (Exp. 2; n=28) pessaries for 12 days. Half of the ewes in each experiment were supplemented 24h before withdrawal of pessaries with either 10mg oral MAP tablets (Exp. 1) or 25mg i.m. progesterone (P(4)) administration (Exp. 2; P(4)-supplement-treated group). Fertile rams were allowed with the ewes at sponge removal (Day 0, 0h) and estrus was monitored at 6-h intervals for 3 days. Blood samples were collected for measurements of P(4) (Exp. 1 and Exp. 2) and LH (Exp. 2). In both experiments, the percent of ewes in estrus was greater (P<0.05) and intervals to estrus were longer (P<0.05) in progestagen-supplement-treated than control ewes. In Exp. 2, the occurrence and magnitude of LH surges were greater (P<0.01) and intervals to onset of LH surge were longer (P<0.01) in P(4)-supplement-treated than control ewes. In Exp. 2, P(4) supplement elevated P(4) levels from 1.8+/-0.1ng/mL on Day -1 to 4.2+/-0.3 on Day 0 (P<0.001). Following pessaries removal, P(4) concentrations fell to basal values on Day 1 in both groups and remained low until Day 5. Then, P(4) concentrations increased and remained elevated through Day 19 in all (100%) progestagen-supplement-treated in Exp. 1 (12/12) and Exp. 2 (14/14) and in only 5/12 (41.7%) and 6/14 (42.9%) control ewes, respectively. These ewes were confirmed pregnant by ultrasonography and lambed on Day 149.2+/-0.2 following Day 0. In conclusion, progestagen supplement 24h prior to removal of pessary can be used successfully to improve reproductive performance of ewes bred out-of-season.  相似文献   

16.
The objectives were to evaluate, in anestrous ewes, the effectiveness of a CIDR-G device (0.3 g progesterone) administered for 5 d to induce estrus; and FSH (Folltropin; 55 mg NIH-FSH-P1 equivalent) in saline:propylene glycol (1:4) 24 h before insert removal (Day 0), to increase ovulation rate and prolificacy. Ewes of mixed breeding were assigned at random to 3 treatments: control (C; n = 125), 5 d progesterone (P5; n = 257) and 5 d progesterone plus FSH (P5F; n = 271). Intact rams were joined at insert removal and ewes were observed every 24 h for 3 d. On Day 14, the ovulation rates of all ewes detected in estrus in the treated groups were determined using transrectal ultrasonography. Rams were removed on Day 26 to 31. Ewes were examined for pregnancy then, and again 20 to 25 d later to detect ewes that conceived to the second service period. Percentage of ewes marked by rams was higher in progesterone-treated (77%) than in C (20%; P < 0.01), but did not differ between P5 and P5F. The ovulation rate (1.95+/-0.04) did not differ due to FSH. Conception (68%) and pregnancy (52%) rates were higher in progesterone-treated (P < 0.01) than in C (0%) ewes. Estrous response varied quadratically with time after ram introduction, and the conception rate varied quadratically with the time of observation of onset of estrus. Over two service periods more progesterone-treated than C ewes lambed (65 vs 45%; P < 0.01). Lambs born per ewe exposed (0.7+/-0.1, 1.0+/-0.1, and 1.1+/-0.1 for C, P5 and P5F, respectively) was increased by progesterone (P < 0.05). Litter size to the first service period (1.59+/-0.04) and overall (1.54+/-0.03) did not differ among treatment groups. FSH-treated ewes tended to have more lambs (1.67+/-0.1) than did ewes receiving progesterone alone (1.5+/-0.1; P = 0.06) and than did ewes lambing to the second service period (1.5+/-0.1; P = 0.06). In summary, a 5-d progesterone pre-treatment of anestrous ewes induced estrous cycles and increased the pregnancy rates. A single injection of FSH only tended to increase litter size.  相似文献   

17.
Two experiments were conducted to examine effects of exogenous ovine growth hormone (oGH) on growth and reproductive traits of ewe lambs. In the first trial, 30 Debouillet ewe lambs (4 months old) received either 0 or 2.5 mg, s.c. of oGH (Day 0 = first day of 98-day treatment). Ovarian cyclicity was determined by monitoring serum progesterone. Efficiency of gain (first 50 days of treatment) was more (P < 0.10) desirable in oGH-treated animals, but did not differ (P > 0.20) between groups during the last 48 days of treatment. Serum GH in alternate-day samples was elevated five-fold (P < 0.01). First estrus occurred 10 days earlier (P = 0.14) in oGH-treated ewe lambs. In a second trial, 45 ewe lambs were evenly divided into three groups receiving 0 mg of oGH (CON; 50 injections), 2.5 mg of oGH (GH98, 50 injections) or 25 injections containing 2.5 mg of oGH followed by 25 injections of 0 mg of oGH (GH48) on alternate days for 98 days before a breeding season. Ewe lambs receiving GH48 had higher (P < 0.05) gains the first 24 days than those receiving CON or GH98. Ewes receiving GH48 demonstrated first estrus (P = 0.06) 22 days before control ewes and 28 days before GH98 ewes. Other reproductive traits did not differ (P > 0.25). Serum GH was greatly elevated by injections of exogenous oGH, but neither serum insulin nor prolactin was affected. Short-term elevation of serum GH resulting from exogenous oGH injections marginally enhances reproductive and growth responses, but does not induce major changes in these traits in ewe lambs after 4 months of treatment.  相似文献   

18.
Hair sheep ewes were used to evaluate the influence of various levels of mating stimuli on the duration and timing of estrus and LH concentrations around estrus. Ewes were treated with PGF2alpha (15 mg, im) 10 d apart. At the time of the second PGF2alpha treatment (Day 0) ewes were placed in groups and exposed to different types of mating stimuli. One group of ewes (n = 16) was exposed to an epididymectomized ram (RAM), a second group of ewes (n = 16) was exposed to an epididymectomized ram wearing an apron to prevent intromission (APRON) and a third group of ewes (n = 17) was exposed to an androgenized ovariectomized ewe (T-EWE). Jugular blood samples were collected from ewes at 6-h intervals through Day 5. Plasma was harvested and LH concentration was determined by RIA. The ewes were observed at 6-h intervals to detect estrus. A ewe was considered to be out of estrus when she no longer stood to be mounted by the teaser animal. There was no difference (P > 0.10) in the proportion of ewes expressing estrus (79.6%) or having an LH surge (85.7%) among the treatments. Neither the time to estrus nor the duration of estrus were different (P > 0.10) among APRON, RAM or T-EWE groups (41.6+/-3.8 vs 43.6+/-3.6 vs 46.1+/-3.6 h, respectively, and 26.5+/-2.2 vs 24.8+/-2.3 vs 30.5+/-2.2 h, respectively). The time to LH surge was similar (P > 0.10) among APRON, RAM and T-EWE groups (51.2+/-4.5 vs 51.2+/-4.7 vs 52.7+/-4.5 h, respectively). The magnitude of the LH surge was similar (P > 0.10) in the T-EWE, APRON and RAM ewes (99.7+/-4.9 vs 87.2+/-4.9 vs 85.8+/-5.0 ng/mL, respectively). The time from estrus to the LH surge was not different (P > 0.10) among APRON, RAM or T-EWE ewes (10.1+/-2.2 vs 9.8+/-2.3 vs 11.6+/-2.3 h, respectively). These results show that the expression and duration of estrus are not influenced by different types of mating stimuli in hair sheep ewes. In addition, the timing and the magnitude of LH release does not appear to be influenced by mating stimuli around the time of estrus.  相似文献   

19.
Three experiments (Exp) assessed the influence of stage of the estrous cycle, pregnancy, and intrauterine infusion of ovine conceptus secretory proteins (oCSP) on turnover of inositol trisphosphate (the putative second-messenger for oxytocin-stimulated secretion of prostaglandin F2 alpha) in ovine endometrium during luteolysis and maternal recognition of pregnancy. In Exp 1, endometrium was collected from 5 cyclic (Cy) and 6 pregnant (P) ewes on Day 16 after onset of estrus. In Exp 2, endometrium was collected from Day 12 Cy (n = 5), Day 12 P (n = 3), Day 16 Cy (n = 4), and Day 16 P (n = 3) ewes. In Exp 3, 12 Cy ewes were allotted randomly, in a 2 x 2 factorial arrangement, to receive serum protein (SP), or oCSP and estradiol-17 beta (E2), or vehicle treatments. Ewes were injected i.v. with 0.5 mg E2 or vehicle on Day 12 and received twice-daily infusions of 1.5 mg SP or oCSP (containing 25 micrograms ovine trophoblast protein-1 by radioimmunoassay [RIA]) + SP (1.5 mg total protein) into each uterine horn on Days 12, 13, and 14. Blood samples for RIA of plasma progesterone were collected on Days 10-15 (before treatment on each day) and endometrium was collected on Day 15. For each Exp, 100 mg endometrium was incubated, in duplicate, for 2 h with 10 microCi [3H] inositol and treated with 0 or 100 nM oxytocin (OT) for 20 min, then [3H]inositol mono-, bis-, and trisphosphates (IP1, IP2, and IP3, respectively) were quantified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Preovulatory follicles were removed from ewes during estrus to determine hormonal, ovarian and behavioral responses. In Experiment 1, new follicles were recruited and ovulated within 4 days, and a second estrous period was observed in most ewes. In Experiment 2, follicles were removed at Day 0 (estrus), Day 3.5 and Day 7.0 to determine responses to repeated follicular removal in the absence of a corpus luteum (CL). Ewes in two groups were given exogenous progestin at the time of first or second surgery. Each follicular removal was followed by a surge of follicle-stimulating hormone (FSH) and follicular growth, and in many cases, behavioral estrus and/or a surge of luteinizing hormone (LH) was detected around the time of the next follicular removal. Although not necessary for display of estrus, treatment with progestin during follicular maturation increased the number of ewes showing estrus. When the newly developing follicles were allowed to ovulate, resulting corpora lutea produced low levels of progesterone or had a short life span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号