首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main goal of this research was to survey information about the physiology of Eichhornia crassipes and Salvinia auriculata and their capacity to remove nitrogen and phosphorus from the environment, after quantifying the concentrations of the nitrogen (NO3-N, NH4-N and total-N) and phosphorus (PO4-P and total-P) compounds in the water. The macrophytes were incubated in the laboratory in plastic vials of approximately 1.5 litters containing a previously prepared solution of NH4NO3, NH4Cl and KH2PO4. Eichhornia crassipes exhibited the highest rates of nutrient reduction and the concentrations of NO3-N, NH4-N and PO4-P in the water influenced the uptake rates of nitrogen and phosphorus of the E. crassipes and S. auriculata. This information can help to reach adequate management strategies for aquatic macrophytes in order to reduce the eutrophication process in Imboassica lagoon.  相似文献   

2.
Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) were analyzed to determine their effectiveness in aquaculture wastewater treatment in Malaysia. Wastewater from fish farm in Semanggol Perak, Malaysia was sampled and the parameters determined included, the pH, turbidity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), nitrite phosphate (PO4(3-)), nitrate (NO(3-)), nitrite (NO(-2)), ammonia (NH3), and total kjedahl nitrogen (TKN). Also, hydroponics system was set up and was added with fresh plants weights of 150 +/- 20 grams Eichhornia crassipes and 50 +/- 10 grams Pistia stratiotes during the 30 days experiment. The phytoremediation treatment with Eichhornia crassipes had pH ranging from 5.52 to 5.59 and from 4.45 to 5.5 while Pistia stratiotes had its pH value from 5.76 to 6.49 and from 6.24 to 7.07. Considerable percentage reduction was observed in all the parameters treated with the phytoremediators. Percentage reduction of turbidity for Eichhornia crassipes were 85.26% and 87.05% while Pistia stratiotes were 92.70% and 93.69% respectively. Similar reductions were observed in COD, TKN, NO(3-), NH3, and PO4(3-). The capability of these plants in removing nutrients was established from the study. Removal of aquatic macrophytes from water bodies is recommended for efficient water purification.  相似文献   

3.
This study presents a kinetic model of oxygen consumption during aerobic decomposition of detritus from seven species of aquatic macrophytes: Cabomba furcata, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Oxycaryum cubense and Utricularia breviscapa. The aquatic macrophytes were collected from Oleo Lagoon situated in the Mogi-Gua?u river floodplain (SP, Brazil). Mineralization experiments were performed using the closed bottles method. Incubations made with lake water and macrophytes detritus (500 mL and 200 mg.L(-1) (DM), respectively) were maintained during 45 to 80 days at 20 degrees C under aerobic conditions and darkness. Carbon content of leachates from aquatic macrophytes detritus and dissolved oxygen concentrations were analyzed. From the results we concluded that: i) the decomposition constants differ among macrophytes; these differences being dependent primarily on molecular and elemental composition of detritus and ii) in the short term, most of the oxygen demand seems to depend upon the demineralization of the dissolved carbon fraction.  相似文献   

4.
The aquatic grasshopper Cornops aquaticum (Bruner) is native to South America and inhabits lowlands from southern Mexico to Central Argentina and Uruguay. This grasshopper is host-specific to aquatic plants of the genera Eichhornia and Pontederia. The objectives of this study were to analyze the feeding patterns of the aquatic grasshopper C. aquaticum in relationship to development stages and sex and to determine the food consumption rate in their host plant, Eichhornia crassipes. Samples were collected from April 2006 to May 2007 in different floodplain lakes of the Middle Parana River. The average consumption was greater in the females (0.127 g food/day ± 0.051) than in the males (0.060 g food/day ± 0.025). The feces of 361 nymphs and adults of this locust were examined and the most common tissue fragments found were of the water hyacinth (E. crassipes). In the initial nymphal stages (I, II and III), an exclusive consumption of E. crassipes was registered, while in the IV and V stages the choice included also other macrophytes. In summary, C. aquaticum presents polyphagy in the field, feeding on six macrophytes of different classes and families.  相似文献   

5.
The most important floating aquatic weeds (FAWs) are Eichhornia crassipes, Salvinia molesta and Pistia stratiotes. E. crassipes and P. stratiotes reproduce sexually. All three species reproduce asexually. E. crassipes and S. molesta have particularly high growth rates. All can form dense mats and growth rates are increased by high nutrient levels and temperatures. Spread between continents and watersheds is largely the result of human activities. Spread within watersheds is mostly via floating propagules. FAWs are known to affect water resource management, the continued existence of human riverine and wetland communities, and conservation of biodiversity. Waterways can be blocked, and the efficiency of irrigation and hydro generation impaired. People are affected by reduction of the fish catch, inability to travel by boat and consequent isolation from gardens, markets and health services, and also changes in populations of vectors of human and animal diseases. Biodiversity can be reduced and conservation value affected. It is proposed that rational application of physical, chemical and biological control of FAWs, and reduction of nutrient input should be part of every strategy for the sustainable management of wetlands.  相似文献   

6.
Infern?o Lake, located within the Jataí Ecological Station in Luiz Ant nio Municipal district (S?o Paulo State, Brazil), is one of the most typical ox-bow lake of the Mogi-Gua?u River, and it presents, as the main feature, its great quantity of aquatic macrophytes, whose intensive development, in the last years practically covered the whole mirror of water. With the purpose to point out the composition and to establish the relative participation of the phytophilic zoocoenosis that inhabits the different macrophytes of that lake, a collection program of the main vegetation stands was established. The collections, were carried out randomly, during dry season (1994), in stands of Salvinia auriculata, Utricularia sp., Cabomba piauhyensis, Eichhornia azurea and Scirpus cubensis being used specific methodology for each vegetable type. The analysis of the different macrophytes showed the presence of 4,130 macroinvertebrates of 28 families, in which Chironomidae (Diptera) and Naididae (Oligochaeta) were the most representative, contributing on the average with 51% and 25% of the total fauna. Asheum, Beardius, Chironomus, Goeldichironomus, Parachironomus and Polypedilum were the most abundant Chironomidae genera. Species of the genus Dero (Dero) and D. (Aulophorus) represented the most typical Naididac of the phytofauna. With clear faunistic gradient from the shore to the center of the lake, the taxocoenosis indicated low similarity (PSc < 50%), evidencing its own characteristics of each biotope. On the contrary, there was a high similarity (PSc > 60%) among the associated communities on different vegetables, when grouped into feeding guilds, with expressive participation, in most of the macrophytes, of the collector-gatherers category, except on S. auriculata, whose predators (> 50%) and collector-filterers (> 20%) dominance turned that zoocoenosis distinct from the others.  相似文献   

7.
The relationship between the aquatic macrophyte cover in upper segments of tributaries and this cover in these tributaries but near the reservoir's main body was tested. Sixteen taxa belonging to 12 families of aquatic macrophytes were recorded in Cachoeira Dourada Reservoir. The most frequent species were Eichhornia azurea (frequency of occurrence=92%; n=37 sites) and E. crassipes (44%). Upper segments of the tributaries were the main areas colonized by these aquatic macrophytes. The positive relationship between the aquatic macrophyte cover between the upper and lower segments of tributaries indicates the importance of dispersion in the colonization of the arms and the reservoir's main body.  相似文献   

8.
The effectiveness of heavy metal uptake from contaminated nutrient solution by four aquatic macrophytes (Pistia stratiotes L., Salvinia auriculata AubL, Salvinia minima Baker, and Azolla filiculoides Lam) was estimated in this study. The influence of cadmium (3.5 mg L(-1) and 10.5 mg L(-1)) and lead (25 mg L(-1) and 125 mg L(-1)) on the stress symptoms was observed through the determination of chlorophyll content and transpiration rate over 14 days of the experiment. The results of the present study showed extreme reductions in Cd and Pb concentrations in solution during the first 4 days. The accumulation of Pb in plant tissues was the highest during the first 4 days and was more than 10 times higher in the roots (42,862 mg kg(-1)) than in the leaves (3867 mg kg(-1)). The accumulation of Cd slowly increased and was the highest at the end of the experiment. Concentrations in roots (3923 mg kg(-1)) were roughly 6 times higher than in the leaves (624 mg kg(-1)). Results showed significant decrease in the transpiration rate at Pb treatment and a significant increase at Cd treatment during 48 hours of exposition.  相似文献   

9.
Under the present investigation effectiveness of three aquatic macrophytes Pistia stratiotes L. (water lettuce), Spirodela polyrrhiza W. Koch (duckweed) and Eichhornia crassipes were tested for the removal of five heavy metals (Fe, Zn, Cu, Cr and Cd). These plants were grown at three different concentrations (1.0, 2.0 and 5.0mgl(-1)) of metals in laboratory experiment. Result revealed high removal (>90%) of different metals during 15 days experiment. Highest removal was observed on 12th day of experiment, thereafter it decreased. Results revealed E. crassipes as the most efficient for the removal of selected heavy metals followed by P. stratiotes and S. polyrrhiza. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the water. Significant correlations between metal concentration in final water and macrophytes were obtained. Plants have accumulated heavy metals in its body without the production of any toxicity or reduction in growth. Selected plants shown a wide range of tolerance to all of the selected metals and therefore can be used for large scale removal of heavy metals from waste water.  相似文献   

10.
Underyearling hybrids of the cross Ctenopharyngodon idella ♀ (grass carp) and Hypophthalmichthys nobilis ♂ (bighead), averaging 104.8 mm total length were stocked for two weeks in cement tanks holding 605 1 of water with various combinations of submersed or floating aquatic plants. The submersed species most preferred were Ceratophyllum demersum, Chara sp. and Najas guadalupensis. Hydrilla verticillata, Hygrophila polysperma, Myriophyllum pinnatum and Utricularia foliosa were fed on from a minor to moderate extent. No feeding damage was observed on Egeria densa and Potamogeton illinoensis. Azolla caroliniana, Lemna sp. and Wolffia columbiana were readily consumed while Salvinia rotundifolia was not preferred when in combination with these floating plant species. Feeding damage to the submersed roots of Eichhornia crassipes and Pistia stratiotes was minor during a 30 day period. Hybrid fingerlings readily fed on mosquito larvae and small leeches when offered to them in an aquarium on one occasion.  相似文献   

11.
Phytoremediation has the potential for implementation at mercury- (Hg) and methylHg (MeHg)-contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated forms, over a 68-day hydroponic study. The suitability of E. crassipes to assimilate both Hg and MeHg was evaluated under differing phosphate (PO4) concentrations, light intensities, and sediment:aqueous phase contamination ratios. Because aquatic rhizospheres have the ability to enhance MeHg formation, the level of MeHg in water, sediment, and water hyacinth was also measured. Hg and MeHg were found to concentrate preferentially in the roots of E. crassipes with little translocation to the shoots or leaves of the plant, a result consistent with studies from similar macrophytes. Sediments were found to be the major sink for Hg as they were able to sequester Hg, making it non-bioavailable for water hyacinth uptake. An optimum PO4 concentration was observed for Hg and MeHg uptake. Increasing light intensity served to enhance the translocation of both Hg and MeHg from roots to shoots. Assimilation of Hg and MeHg into the biomass of water hyacinths represents a potential means for sustainable remediation of contaminated waters and sediments under the appropriate conditions.  相似文献   

12.
Three aquatic plants Eichhornia crassipes, Lemna minor and Spirodela polyrhhiza were used in laboratory for the removal of heavy metals from the coal mining effluent. Plants were grown singly as well as in combination during 21 days phytoremediation experiment. Results revealed that combination of E. crassipes and L. minor was the most efficient for the removal of heavy metals while E. crassipes was the most efficient in monoculture. Significant correlations between metal concentration in final water and macrophytes were obtained. Translocation factor i.e. ratio of shoot to root metal concentration revealed that metals were largely retained in the roots of aquatic macrophytes. Analytical results showed that plant roots have accumulated heavy metals approximately 10 times of its initial concentration. These plants were also subjected to toxicity assessment and no symptom of metal toxicity was found therefore, this method can be applied on the large scale treatment of waste water where volumes generated are very high and concentrations of pollutants are low.  相似文献   

13.
An applied ecological approach was used to assess the anthropogenic disturbances on the aquatic systems of the Sorocaba river and its wetlands in the Sorocaba-SP municipality (Southeastern Brazil). Two samplings of water, sediment, macroinvertebrates, and macrophytes were performed in 2017, during the rainy season (February) and dry season (June). Traditional limnological methods were applied to the biological material (macrophytes and macroinvertebrates) and limnological variables. In 2017, domestic wastewater and diffuse pollution were the main anthropogenic impacts on the aquatic ecosystems of the Sorocaba municipality. The used approach allowed the verification of the human disturbances on aquatic systems, sediment, biological communities, and landscape. We found that biochemical oxygen demand, thermotolerant coliforms, total phosphorus, dissolved oxygen, and turbidity are above reference concentrations from the Brazilian guideline CONAMA Resolution 357/05. Four macroinvertebrates orders (Diptera, Oligochaeta, Hirudinea, and Gastropoda) and three macrophytes species (Eichhornia crassipes, Salvinia auriculata and Pistia stratiotes) allowed inferring that Sorocaba river and associated wetlands suffer water quality loss due to organic pollution. The major land use classes were anthropogenic agricultural and non-agricultural (75.42%) disturbances, contributing to limnological alterations and low quality of riparian vegetation. Urban wetlands were similar (e.g. sediment properties, limnological variables, bioindicators) and differed from the contributor river, a situation probably related to the wetlands bimodal pulse. Considering the hydric network of tropical countries in the same geographic region, the similar dynamics of the water bodies, and the context of urbanization, the approach can be applied to assess the human disturbances in the region.  相似文献   

14.
The apple snail Pomacea insularum is an aquatic invasive gastropod native to South America that has the potential to cause harm to aquatic ecosystems, wetland restoration, and agriculture. To predict the potential impact of this snail on aquatic ecosystems, we tested the feeding rate of P. insularum , under laboratory nonchoice experiments, for 3 species of invasive macrophytes and 13 species of native aquatic plants that are important for wetland restoration and health. High levels of consumption were recorded for four native species ( Ceratophyllum demersum , Hymenocallis liriosme , Ruppia maritima , and Sagittaria lancifolia ) and three invasive species ( Colocasia esculenta , Alternanthera philoxeroides , and Eichhornia crassipes ). In contrast, less than 10% of the biomass of Spartina alterniflora , Scirpus californicus , Thalia dealbata , and Typha latifolia was consumed by P. insularum over the test period. The palatability of macrophytes was negatively correlated with dry matter content, making our results generalizable to all regions where this invader may be present. Based on our results, wetland restoration in areas invaded by P. insularum should focus on emergent structural species with low palatability. Apple snails should not be considered as agents of biocontrol for invasive plants; although apple snails fed on invasive plants at a high rate, their consumption of many native species was even greater.  相似文献   

15.
In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu+2, Hg+2, Pb+2, and Zn+2). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.  相似文献   

16.
针对不同营养状况的富营养化水体修复而选择吸收养分效率较强的水生植物,采用改进常规耗竭法比较研究了6种不同基因型水生植物凤眼莲(Eichhornia crassipes Solms)、黄花水龙(Jussiaea stipulacea Ohwi)、再力花(Thalia dealbata Fraser)、美人蕉(Canna glauca L.)、水芹[Oenanthe javanica(Bl).DC]和豆瓣菜(Nasturtium officinaleR.Br.)对铵态氮和硝态氮吸收动力学特性。结果表明,不同基因型水生植物吸收铵态氮和硝态氮的动力学特性可用Michaelis-Menten方程来描述。在低浓度培养下,不同基因型水生植物对NH4+-N和NO3--N吸收的动力学参数Imax和Km差异较大,其吸收NH4+-N和NO3--N的Imax最大是水芹,其次是豆瓣菜;Km值最小的是水芹,其次是豆瓣菜;且水芹对NH4+-N和NO3--N不仅具有较强的亲和力,还具有较高的离子吸收速率。结果还表明,当介质中氮浓度较低时,水芹有优先吸收硝态氮的趋势,而豆瓣菜和再力花有优先吸收铵态氮的趋势。  相似文献   

17.
不同生活型大型植物对浮游植物群落的影响   总被引:11,自引:0,他引:11  
湖泊加速富营养化是世界范围内的普遍现象,由此造成水质恶化,藻类大量增生,水生植被特别是沉水植物衰退乃至消失,生物多样性降低,严重影响湖泊主要功能的发挥。大型植物与浮游植物都是浅水湖泊的初级生产者,其间存在复杂的相互关系,如除竞争作用外,还可能存在相生...  相似文献   

18.
This study investigated the development of interspecific adaptations of flow-resistance mechanisms to higher flow rates in rigid-stemmed Hygrophila salicifolia (Vahl) Nees (willow leaf Hygrophila sp.) plants placed in simulated water channels. The results indicate that adaptations to higher flow rates include a reduction in: growth rate, average fresh weight, average dry weight, and average diameter; but an increase in the number of parallel shoots. These effects combine to create a streamlined profile, reduce plant damage, and increase propagation through adventitious budding. Higher flow rates also reduced the ratio of average plant height to average root length in rigid-stemmed Hygrophila sp. The increased root length, strengthening of plant anchors, and reduction of uprooting seen at higher flow rates are likely to increase slope stability and reduce riverbank topsoil runoff. Moreover, rigid-stemmed aquatic macrophytes develop different adaptations than flexible-stemmed water plants (e.g., water celery); for these plants, higher flow velocities trigger an increase in the average density of vascular bundles and a reduction of the average root length, which results in uprooting and movement to different locations. These results suggest that different aquatic macrophytes play different roles in water channels. Our methods and findings can inform further investigations into the roles played by different aquatic macrophytes in ecological engineering and help to identify optimal planting materials or precursors for riverbanks.  相似文献   

19.
Abstract

In the present study, three aquatic macrophytes, Eichhornia crassipes, Salvinia molesta, and Pistia stratiotes were used to assess their relative efficacies in decontamination of a fish culture pond, regularly fed with coal mine effluent (CME). The level of metals like Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd were much higher in CME-fed pond water than their recommended limits in drinking water set by the Bureau of Indian standards and in effluents by the Environmental Protection Agency. The levels of metal were lowered substantially in CME-fed pond water after exposure of the above plants to such water, however, metal levels in the plants increased tremendously. The increased metal levels in plants severely damaged their physiological and biochemical processes. The contents of chlorophyll a, b and carotenoid were reduced by 63.2, 64.2, and 46.3%, respectively, in E. crassipes, 41, 57.4, and 57.8% in S. molesta, and 42, 62, and 61% in P. stratiotes. The accumulating metals also generated oxidative stress in plants, as evident from the increased superoxide dismutase and catalase activities and enhanced malondialdehyde content. The E. crassipes was the most potent in absorbing the metals from the CME-fed pond water, followed by S. molesta and P. stratiotes.  相似文献   

20.
西凉湖水生植物多样性研究   总被引:9,自引:1,他引:8  
研究了江汉湖群西凉湖水生植物多样性的现状及其变化 ,讨论了西凉湖水生植物多样性丧失的原因和保护的途径。主要结果是 :( 1 )西凉湖现有水生植物 3 2科 5 6属 77种 ,优势种类为微齿眼子菜、密齿苦草、轮叶黑藻、菹草、野菱、双角菱、金鱼藻、凤眼莲和菰等。 ( 2 )西凉湖现有水生植物群落类型 1 3个 ,全湖水生植被覆盖率约为 61 %,平均生物量为 1 4 70 .5 g/m2 。 ( 3 )物种多样性指数最高的群落是“凤眼莲 +野菱 +双角菱群丛”(D =0 .8499,H =2 .975 8) ,其次为“菰—凤眼莲群丛”与“野菱 +双角菱群丛”(D =0 .840 1 ,H =2 .82 35 ;D =0 .83 2 4,H =2 .888) ,以微齿眼子菜群丛的多样性指数最低 (D =0 .2 2 81 ,H =0 .782 3 )。 ( 4 )二十年来 ,西凉湖水生植物多样性严重丧失 :植被覆盖率和全湖平均单位面积生物量分别下降了 3 8.80 %与 77.87%,先后有 8种水生植物 (水葱、荸荠、莲子草、乌菱、细果野菱、萍蓬草、睡莲、小眼子菜 )和 4个水生植物群落类型(荇菜群落、乌菱群落、马来眼子菜群落、穗花狐尾藻群落 )从西凉湖消失。 ( 5 )多样性丧失的原因是围网养殖、过度收获水草、耙捞蚌类螺类等人为干扰  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号