首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The location of retention in the channel can influence invertebrate assemblage and breakdown processes associated with a litter particle in heterogeneous streams. We previously identified four types of litter patches that formed on riffles or different locations in pools (middle, edge, alcove), and demonstrated that middle patches had higher litter processing rates than the other patches. In this study, we examined differences in retention on the four patch types among leaves, woody materials and small litter particles, and among leaves of different sizes, by sampling natural and manipulated litter particles that were newly retained. Proportionally more woody materials, leaf pieces (16–50 mm) and particulate organic matter (1–16 mm) than leaves (>50 mm) were retained on middle patches, while proportionally more leaves than the other litter particles were retained on riffle and edge patches. The retention pattern of leaf species with different leaf sizes and a released experiment of leaf particles revealed that proportionally more leaf particles with smaller sizes were retained on middle patches. The flexibility, shape and dryness of litter particles also seem to affect the location of retention in the channel. These results suggest that the morphology of litter particles have the potential to affect the biological use and breakdown of litter particles through determining the location of retention within the channel. The size of leaves and processes that alter leaf size may have important roles on the breakdown and utilisation by invertebrates in these heterogeneous streams.  相似文献   

2.
1. A substantial portion of particulate organic matter (POM) is stored in the sediment of rivers and streams. Leaf litter breakdown as an ecosystem process mediated by microorganisms and invertebrates is well documented in surface waters. In contrast, this process and especially the implication for invertebrates in subsurface environments remain poorly studied. 2. In the hyporheic zone, sediment grain size distribution exerts a strong influence on hydrodynamics and habitability for invertebrates. We expected that the influence of shredders on organic matter breakdown in river sediments would be influenced strongly by the physical structure of the interstitial habitat. 3. To test this hypothesis, the influence of gammarids (shredders commonly encountered in the hyporheos) on degradation of buried leaf litter was measured in experimental systems (slow filtration columns). We manipulated the structure of the sedimentary habitat by addition of sand to a gravel‐based sediment column to reproduce three conditions of accessible pore volume. Ten gammarids were introduced in columns together with litter bags containing alder leaves at a depth of 8 cm in sediment. Leaves were collected after 28 days to determine leaf mass loss and associated microbial activity (fungal biomass, bacterial abundance and glucosidase, xylosidase and aminopeptidase activities). 4. As predicted, the consumption of buried leaf litter by shredders was strongly influenced by the sediment structure. Effective porosity of 35% and 25% allowed the access to buried leaf litter for gammarids, whereas a lower porosity (12%) did not. As a consequence, leaf litter breakdown rates in columns with 35% and 25% effective porosity were twice as high as in the 12% condition. Microbial activity was poorly stimulated by gammarids, suggesting a low microbial contribution to leaf mass loss and a direct effect of gammarids through feeding activity. 5. Our results show that breakdown of POM in subsurface waters depends on the accessibility of food patches to shredders.  相似文献   

3.
The high biodiversity of tropical forest streams depends on the strong input of organic matter, yet the leaf litter decomposition dynamics in these streams are not well understood. We assessed how seasonal litterfall affects leaf litter breakdown, density and biomass of aquatic invertebrates, and the microbial biomass and sporulation of aquatic hyphomycetes in a South American grassland ‘vereda’ landscape. Although litter production in the riparian area was low, leaf litter breakdown was high compared with other South American systems, with maximum values coinciding with the rainy season. Fungal biomass in decomposing leaves was high, but spore densities in water and sporulation rates were very low. Invertebrates were not abundant in litter bags, suggesting they play a minor role in leaf litter decomposition. Chironomids accounted for ~70 percent of all invertebrates; only 10 percent of non‐Chironomidae invertebrates were shredders. Therefore, fungi appear to be the drivers of leaf litter decomposition. Our results show that despite low productivity and relatively fast litter decomposition, organic matter accumulated in the stream and riparian area. This pattern was attributed to the wet/dry cycles in which leaves falling in the flat riparian zone remain undecomposed (during the dry period) and are massively transported to the riverbed (rainy season).  相似文献   

4.
1. Large amounts of coarse particulate organic matter (CPOM) are buried in the sand and gravel beds of many rivers during spates. The effects of these patchily distributed resources on hyporheic invertebrates and water chemistry are poorly understood. Buried CPOM may provide local ‘hot-spots’ of food for hyporheic detritivores and their predators, alter nutrient supply to nearby sediment biofilms, and generate habitat for some invertebrates. 2. To examine potential short-term effects on hyporheic water chemistry, nutrient concentrations and invertebrate assemblage composition, leaf packs were buried in downwelling (surface water infiltrating the hyporheic zone) and upwelling (hyporheic water emerging to the surface) zones at two sites along a gravel-bed river in northern New South Wales. At one site, pits were excavated to simulate leaf burial (procedural control) and plastic ‘leaves’ were buried to test whether invertebrates might respond to leaves as refuges rather than food. Hyporheic CPOM, sediment size fractions, and interstitial silt content were also quantified at these sites. 3. Dry weights of naturally buried CPOM (leaf litter and wood fragments) varied substantially (0.6–71.7 g L–1 sediment). Amounts of CPOM did not differ between up- vs. downwelling zones or between sites. Hyporheic dissolved oxygen saturation was generally high (> 75%), and was lower in upwelling zones. The hyporheos was dominated taxonomically by water mites (≈ 20 species), whereas small oligochaetes were most abundant (40% of total abundance). Tiny instars of elmid beetle larvae and leptophlebiid mayfly nymphs were also common. Before experimental manipulation, faunal composition differed between up- and downwelling zones. In upwelling zones, bathynellaceans and blind peracarids were found, whereas small individuals of the surface benthos were common in samples from downwelling zones. This validated stratification of the experiment across zones of hydrologic exchange. 4. Twenty days after leaf burial, there was no effect of the treatments at either site on changes in most variables, including mean numbers of taxa and individuals per sample. Similarly, changes in faunal composition of the hyporheos in the treatments paralleled those in the controls except for a weak response in the buried leaves treatment in the upwelling zone at site 1. Artificially buried leaf litter does not seem to influence hyporheic water chemistry or fauna at these two sites. It is probable that naturally buried leaf litter is swiftly processed soon after entrainment and that repeating this experiment immediately after a flood may yield different results.  相似文献   

5.
Clear-fell logging around small headwater streams in Tasmanian wet eucalypt forests was predicted to affect both the retention of leaf litter and the composition and size of leaf packs. Retention structures were surveyed in six natural streams and six streams in forest regenerated 3–5 years after clear-fell and burn logging. Logged streams had more wood, but retained less leaves than natural streams, and consequently had fewer and smaller leaf packs. Leaf packs from natural streams contained 200% more leaves, bark and twigs than packs from logged streams. The effect of buoyancy on leaf retention was assessed with release and recapture of marked Eucalyptus obliqua and Nothofagus cunninghamii leaves. Eucalypt leaves were more likely to be trapped by retention structures on the bed of the stream, while smaller, more buoyant N. cunninghamii leaves were mainly trapped by leaf packs. Leaf packs in natural streams were formed on a matrix of small twigs and long strips of bark, shed from the upper branches of mature stringybark eucalypts, while leaf retention was reduced in logged streams because there are no mature trees to provide effective retention structures. Changes to the channel form increase both discharge and sedimentation. These factors have strong implications for downstream nutrient processing and riverine food webs.  相似文献   

6.
Breakdown of leaf litter is essential for providing detrital resources for food webs but can be impaired by anthropogenic activities, which may disrupt energy flow to consumers. We investigated the relationship between leaf breakdown and food web structure in 12 streams with or without mining impacts on South Island, New Zealand. Six streams received inputs of acid mine drainage (pH 2.5–4.9), three were naturally acidic (pH ~5.0), and three were circumneutral (pH ~6.8). Streams affected by mining either had highly acidic water (pH <3) or iron precipitates present on substrata. Breakdown rates of leaves were significantly lower in mining-affected streams than circumneutral (by almost 50%) but not naturally acidic streams and were driven primarily by microbial activity, as shredding invertebrates were often absent. Mining-affected stream webs were simplified structures with fewer species and links than those in other streams. With few species to process leaf litter and transfer detrital resources, inputs of AMD disrupted both the mechanisms responsible for breakdown and links for energy flow. While faster breakdown rates were associated with larger food webs, limited function maintained in mining-affected streams was sufficient to support primary consumers and small food webs.  相似文献   

7.
Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m?2 day?1) was 25 % higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon’s H′) was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.  相似文献   

8.
The colonization of deciduous leaf litter by aquatic invertebrates was studied at Scott Lake in Algonquin Park, Ontario, Canada. Deciduous leaf packs were colonized after only 2 days submergence. The invertebrate community was dominated by chironomids (25–94% depending on sampling period), and to a lesser extent by oligochaetes, turbellarians, and mayflies. Collectors, such as the chironomids Dicrotendipes, Pseudochironomus, Paratanytarsus and Parakiefferiella were the dominant functional-feeding group suggesting that leaf litter is being used as habitat rather than a direct food source. Deciduous leaf litter lost a substantial amount of weight, due to leaching, after only 48 h submergence. Fall-shed beech (Fagus grandifolia) leaves decomposed more rapidly than fall-shed sugar maple (Acer saccharum) leaves with daily processing coefficients (k), determined using an exponential decay model, of 0.0058 and 0.0039, respectively. Conversely, conditioned maple leaves, defined as leaves remaining on the ground over winter, were processed faster than conditioned beech leaves, with coefficients of 0.0042 and 0.0014, respectively. It is speculated that inhibitory compounds have been leached from the maple leaves, allowing for faster leaf processing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Summary 1. Heterotrophic microorganisms are crucial for mineralising leaf litter and rendering it more palatable to leaf‐shredding invertebrates. A substantial part of leaf litter entering running waters may be buried in the streambed and thus be exposed to the constraining conditions prevailing in the hyporheic zone. The fate of this buried organic matter and particularly the role of microbial conditioning in this habitat remain largely unexplored. 2. The aim of this study was to determine how the location of leaf litter within the streambed (i.e. at the surface or buried), as well as the leaf litter burial history, may affect the leaf‐associated aquatic hyphomycete communities and therefore leaf consumption by invertebrate detritivores. We tested the hypotheses that (i) burial of leaf litter would result in lower decomposition rates associated with changes in microbial assemblages compared with leaf litter at the surface and (ii) altered microbial conditioning of buried leaf litter would lead to decreased quality and palatability to their consumers, translating into lower growth rates of detritivores. 3. These hypotheses were tested experimentally in a second‐order stream where leaf‐associated microbial communities, as well as leaf litter decomposition rates, elemental composition and toughness, were compared across controlled treatments differing by their location within the streambed. We examined the effects of the diverse conditioning treatments on decaying leaf palatability to consumers through feeding trials on three shredder taxa including a freshwater amphipod, of which we also determined the growth rate. 4. Microbial leaf litter decomposition, fungal biomass and sporulation rates were reduced when leaf litter was buried in the hyporheic zone. While the total species richness of fungal assemblages was similar among treatments, the composition of fungal assemblages was affected by leaf litter burial in sediment. 5. Leaf litter burial markedly affected the food quality (especially P content) of leaf material, probably due to the changes in microbial conditioning. Leaf litter palatability to shredders was highest for leaves exposed at the sediment surface and tended to be negatively related to leaf litter toughness and C/P ratio. In addition, burial of leaf litter led to lower amphipod growth rates, which were positively correlated with leaf litter P content. 6. These results emphasise the importance of leaf colonisation by aquatic fungi in the hyporheic zone of headwater streams, where fungal conditioning of leaf litter appears particularly critical for nutrient and energy transfer to higher trophic levels.  相似文献   

10.
Up to 99% of the carbon fuelling the food webs of temperate woodland streams is derived from inputs of terrestrial leaf litter. Aquatic bacteria, fungi, and detritivore invertebrates directly utilize these inputs, transferring this energy to other components of the food web. Increases in atmospheric CO2 could indirectly impact woodland stream food webs by chemically altering leaf litter. This study evaluated CO2-induced chemical changes in aspen ( Populus tremuloides ) leaf litter, and the corresponding effects on stream bacteria, fungi and leaf-shredding cranefly larvae ( Tipula abdominalis : Diptera). Leaf litter from plants grown under elevated CO2 had decreased nutritional value to aquatic decomposers and detritivores because of higher levels of structural compounds and lower nitrogen content. Consequently, elevated CO2-grown leaf litter supported 59% lower bacterial production in a stream than litter grown at ambient CO2 levels, while not affecting fungal biomass. Larval craneflies fed elevated CO2-grown microbially colonized leaves consumed less, assimilated less, and grew 12 times slower than their ambient fed counterparts.  相似文献   

11.
Invasion by exotic trees into riparian areas has the potential to impact aquatic systems. We examined the effects of the exotic Salix fragilis (crack willow) on the structure and functioning of small streams in northern Patagonian Andes via a field survey of benthic invertebrates and leaf litter and an in situ experiment. We compared leaf decomposition of the native Ochetophila trinervis (chacay) and S. fragilis in reaches dominated by native vegetation versus reaches dominated by crack willow. We hypothesized that S. fragilis affects the quality of leaf litter entering the streams, changing the aquatic biota composition and litter decomposition. Our study showed that crack willow leaves decomposed slower than chacay, likely related to leaf properties (i.e., leaf toughness). Benthic leaf litter mass was similar between the two riparian vegetation types, though in stream reaches dominated by crack willow, leaves of this species represented 82% of the total leaf litter. Benthic invertebrate abundance and diversity were similar between reaches but species composition differed. Our study found little evidence for strong impacts of crack willow on those small streams. Further studies on other aspects of ecosystem functioning, such as primary production, would enhance our understanding of the impacts of crack willow on Patagonian streams.  相似文献   

12.
1. The roles that streambed geometry, channel morphology, and water velocity play in the retention and subsequent breakdown of leaf litter in small streams were examined by conducting a series of field and laboratory experiments. 2. In the first experiment, conditioned red alder (Alnus rubra Bongard) leaves were released individually in three riffles and three pools in a second‐order stream. The transport distance of each leaf was measured. Several channel and streambed variables were measured at each leaf settlement location and compared with a similar number of measurements taken at regular intervals along streambed transects (‘reference locations’). Channel features (such as water depth) and substrate variables (including stone height, stone height‐to‐width ratio, and relative protrusion) were the most important factors in leaf retention. 3. In the second experiment, the role of settlement location and reach type in determining the rate of leaf litter breakdown was examined by placing individual conditioned red alder leaves in exposed and sheltered locations (on the upper and lower edges of the upstream face of streambed stones, respectively) in riffle and pool habitats. After 10 days, percent mass remaining of each leaf was measured. Generally, leaves broke down faster in pools than in riffles. However, the role of exposure in breakdown rate differed between reach types (exposed pool > sheltered pool > sheltered riffle > exposed riffle). 4. In the third experiment, the importance of substrate geometry on leaf litter retention was examined by individually releasing artificial leaves upstream of a series of substrate models of varying shape. Substrates with high‐angle upstream faces (were vertical or close to vertical), and that had high aspect ratios (were tall relative to their width), retained leaves more effectively. 5. These results show that streambed morphology is an important factor in leaf litter retention and breakdown. Interactions between substrate and flow characteristics lead to the creation of detrital resource patchiness, and may partition leaf litter inputs between riffles and pools in streams at baseflow conditions.  相似文献   

13.
We hypothesized that (i) the importance of shredders for leaf breakdown is more evident in terms of their biomass than their abundance, due to the large bodies and high-feeding efficiencies of some typical shredders; (ii) non-shredder invertebrates select more refractory leaves because these are a more stable substrate for colonization or to obtain other forms of food. To test these hypotheses, we performed a decomposition experiment with leaves of contrasting chemical composition in a tropical stream, and determined the changes in the ash-free dry mass (AFDM) of the litter, and the invertebrate abundance and biomass during a 44-day period. The biomass of shredders showed a positive relationship with AFDM remaining, whereas their abundance was unrelated to AFDM. While shredder abundance represented only 4–12% of total invertebrate abundance, shredder biomass constituted 19–36% of total invertebrate biomass. We conclude that (i) shredder biomass expresses better than abundance the role of this guild in the decomposition of leaf detritus, demonstrating that they are important for the functioning of tropical streams; (ii) incubation time rather than stability of leaf litter as a substrate influences colonization by non-shredder invertebrates.  相似文献   

14.
1. We investigated the roles of grass litter in streams that drain upland New Zealand tussock grassland, paying particular attention to the ways in which grass leaves differed in their characteristics from much more intensively studied tree leaves. 2. The instantaneous retention rates of tussock grass leaves (Chionochloa rigida) on the bed of a second-order stream (0.157–0.515 m?1) were significantly higher than those of the elliptical leaves of lemonwood trees (Pittosporum eugenioides; 0.068–0.180 m?1). 3. Instantaneous retention rates of grass leaves in two third-order streams were very low. At high discharge, leaf retention rate was greater in Timber Creek (0.0040 m?1), a braided, gravel bed stream, than in the adjacent Kye Burn (0.0010m?1), with its well-defined channel and large, stable substrate particles. At baseflow, retention rates were similar in the two streams (0.0053–0.0064 m?1 for Timber Creek; 0.0047–0.0058m?1 for Kye Burn). Nevertheless, total coarse particulate organic matter (mainly derived from tussock litter) was present at lower densities in Timber Creek than Kye Bum, reflecting the instability of the bed of the former and its tendency to spread over a wide area at high discharge. 4. The results of a colonization tray experiment, in which substrate was mixed with tussock leaves, nylon ribbon or nothing, indicate that tussock leaves do not play an important role as microhabitat or food in the two third-order streams. This may reflect the poor food quality of grass litter, and/or the relatively low availability and predictability of its supply. 5. An in situ experiment revealed that tussock leaves play a role, analogous to that reported for certain seagrasses, in stabilizing substrate and reducing sediment transport, apparently by reducing bed roughness and therefore the force of friction on the bed.  相似文献   

15.
The damming of rivers and streams alters downstream habitat characteristics and biotic assemblages, and might thus alter stream functioning, although there is not much direct evidence of this impact. In this study we compared breakdown of alder leaves upstream and downstream from 4 small (<1 hm3) dams in 4 Mediterranean mountain streams with no appreciable impact on water temperature and nutrient concentrations. Despite no effect on water characteristics, dams decreased leaf litter breakdown rates. Abundance and biomass of invertebrates and shredders and hyphomycete sporulation rates did not differ between upstream and downstream bags. However, the structure of invertebrate and hyphomycete assemblages did. Especially evident was a drop in limnephilids, which might explain the slower breakdown of leaf litter below dams. These results may help to explain some of the variability found in the literature on the effects of dams on decomposition rates. If dams increase water temperature and nutrient concentrations they may promote faster decomposition, but if dams do not change water characteristics, their impact on detritivore communities may cause slower decomposition rates.  相似文献   

16.
1. Leaf litter decomposition is one of the most important ecosystem processes in streams. Recent studies suggest that facilitation, in which litter is processed by a succession of species with differing abilities and requirements, may be important in making the nutrients bound in litter available to the stream assemblage.
2. We predicted that stream invertebrates that feed on terrestrial leaf litter (shredders) and tadpoles would facilitate leaf litter decomposition by changing the quality of leaf material directly via physical contact or indirectly via nutrient release. We experimentally examined the ability of shredders and tadpoles to break down leaves, independently and together, in artificial streams beside a natural forest stream.
3. The decomposition rate was greater when shredders and tadpoles were together than was expected from rates in single-species treatments, indicating that facilitation occurred. This facilitation operated in one direction only: the rate of leaf breakdown by tadpoles was higher when leaves had been partly processed by shredders, but there was no similar effect when leaves previously occupied by tadpoles were processed by shredders. We did not detect facilitation caused by indirect nutrient release.
4. Shredders may have benefited tadpoles by roughening leaf surfaces, making them easier for the tadpoles to consume and enhancing leaf breakdown in the presence of both taxa. This indicates that the loss of a single species can have impacts on ecosystem functioning that go beyond the loss of its direct contribution.  相似文献   

17.
1. We investigated the effect of moderate eutrophication on leaf litter decomposition and associated invertebrates in five reference and five eutrophied streams in central Portugal. Fungal parameters and litter N and P dynamics were followed in one pair of streams. Benthic invertebrate parameters that are considered useful in bioassessment were estimated in all streams. Finally, we evaluated the utility of decomposition as a tool to assess stream ecosystem functional integrity. 2. Decomposition of alder and oak leaves in coarse mesh bags was on average 2.3–2.7× faster in eutrophied than in reference streams. This was attributed to stimulation of fungal activity (fungal biomass accrual and sporulation of aquatic hyphomycetes) by dissolved nutrients. These effects were more pronounced for oak litter (lower quality substrate) than alder. N content of leaf litter did not differ between stream types, while P accrual was higher in the eutrophied than in the reference stream. Total invertebrate abundances and richness associated with oak litter, but not with alder, were higher in eutrophied streams. 3. We found only positive correlations between stream nutrients (DIN and SRP) and leaf litter decomposition rates in both fine and coarse mesh bags, associated sporulation rates of aquatic hyphomycetes and, in some cases, total invertebrate abundances and richness. 4. Some metrics based on benthic invertebrate community data (e.g. % shredders, % shredder taxa) were significantly lower in eutrophied than in reference streams, whereas the IBMWP index that is specifically designed for the Iberian peninsula classified all 10 streams in the highest possible class as having ‘very good’ ecological conditions. 5. Leaf litter decomposition was sufficiently sensitive to respond to low levels of eutrophication and could be a useful functional measure to complement assessment programmes based on structural parameters.  相似文献   

18.
1. We compare the rates and mechanisms of processing of tussock (Chionochloa spp.) leaf litter in six New Zealand streams draining grassland catchments that contrast in the extent to which they have been developed for pasture. 2. Rates of processing, measured as rate of weight loss of leaf packs and rate of leaf softening, were at the slow end of the spectrum for vascular plant processing. Processing was faster at developed sites, mediated mainly through the influence of oxidized nitrogen concentration on microbial activity. 3. Few invertebrate shredders colonized leaf packs and it is unlikely that invertebrates had an appreciable effect on leaf processing in our study streams, which do not effectively retain leaf litter. Very small headwater tributaries appear to retain leaf litter and possess a more abundant shredder community. 4. Measures of leaf processing in our six streams were significantly correlated with Petersen's (1992) RCE score of stream condition. We discuss the potential for using rate of leaf litter processing as a method of bioassessment. 5. Even the most degraded stream in our study is classed as ‘good’ using the RCE inventory system. Human impact in the Taieri River is relatively small compared with the degradation observed in some parts of the world.  相似文献   

19.
In the summer, the forest canopy lowers the water temperature, which is very important for anadromous fish, and its population density is significantly lower in grassland streams. Leaf litter and terrestrial invertebrates are the critical food resources for stream organisms. In a basin where the riparian forest is preserved, but other areas have been cut, the amount of leaf litter is almost equivalent to that in an intact natural basin. The annual input of terrestrial invertebrates falling into the forested reaches was 1.7 times greater than that in the grassland reaches, and fish biomass was significantly less in the grassland reaches. In-stream large woody debris creates storage sites for organic and inorganic matter and enhances habitat diversity for aquatic biota. However, the volume and number of large wood pieces decreased significantly with pasture development, because it clears the riparian forests and covers the riverbanks with grass. Fine sediment is a prominent by-product of agricultural development and adversely impacts periphyton productivity, the density and diversity of aquatic invertebrates, fish feeding, fish spawning and egg survival. We also examine the adequate width of a riparian buffer if it is to be able to satisfy its ecological functions.  相似文献   

20.
SUMMARY. 1. Although the bulk of litter input to stream ecosystems is in the form of fresh leaves, current understanding of organic matter processing is largely founded on experimental studies made with pre-dried leaves. This paradox points to the critical need for evaluating to what extent those experiments with dried leaves reflect natural litter decomposition.
2. The mass loss rates, patterns of mass loss, and chemical changes during processing of fresh leaf litter were compared with air-dried leaf litter in a stream ecosystem.
3. Although overall mass loss rates were similar between treatments ( k = 0.0213 day−1 and 0.0206 day−1), fresh leaves lost mass at a constant rate, whereas the decay of dried leaves proceeded in two distinct phases. Soluble organic carbon, phosphorus, and potassium were rapidly leached from dried litter, but were largely retained in fresh material for more than a week. Kinetics of concentrations of cellulose and changes in amounts of lignin remaining per leaf pack revealed further differences in decomposition dynamics between treatments, apparently related, either directly or indirectly, to differences in leaching behaviour.
4. Dynamics of nitrogen and protein contents were similar between treatments, indicating that microbial colonization was not greatly delayed on fresh leaves.
5. It is concluded that the retention of labile carbon and nutrients in fresh leaf litter facilitates their utilization by leaf-associated micro-organisms and invertebrates, resulting in an increased importance of biotic processes relative to physical processes such as leaching.
6. At the ecosystem level, retention of carbon and nutrients in streams would be increased, allowing greater overall productivity. Conversely, the availability of labile organic carbon would be reduced in compartments such as the epilithon, fine sediments, and the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号