首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation.  相似文献   

2.
We analyzed the structure of the N-linked oligosaccharides enzymatically liberated from the organic matrix (OM) component in the nacreous layer of Japanese pearl oyster: Pinctada fucata. The lectin-blot analysis of the soluble OM after separation by SDS-PAGE, four components, with sizes of approximately 55 kDa, 35 kDa, 25 kDa, and 21 kDa were detected with GNA lectin, which recognized terminal mannose of high mannose and hybrid types of N-glycan. The 55-kDa component of the soluble OM detected by lectin blotting was identified as nacrein by using liquid chromatography/mass spectrometry (LC/MS). LC/MS analysis of the N-glycan liberated from nacrein detected a hybrid-type N-glycan, which contained sulfite and sialic acid at its terminus. The data strongly imply that nacrein, a sulfated OM glycoprotein, participates in molluscan biomineralization by creating a favorable environment for calcium ion uptake through sulfonic acid and sialic acid.  相似文献   

3.
Molecular mechanism of the nacreous layer formation in Pinctada maxima   总被引:7,自引:0,他引:7  
We have cloned the cDNAs that encode two kinds of molluscan shell matrix proteins, namely N66 and N14, in the nacreous layer of Pinctada maxima. N66 is composed of carbonic anhydrase-like and repeat domains, as described for nacrein (1) in the pearls of P. fucata. N14 is homologous to N16, recently found in the nacreous layer of P. fucata (2) and is characterized by high proportions of Gly, Tyr, and Asn together with NG repeat sequences. The molecular weights of these proteins were estimated as 59,814 and 13,734 Da, respectively. Structural differences were clearly indicated in the alignment and length of the repeat sequences of the sets of the homogeneous proteins (N66/nacrein and N14/N16). The longer repeat sequences of N66 and N14 may be responsible for P. maxima's excellent property of calcification. The in vitro crystallization experiments revealed that the mixture of N66 and N14 could induce platy aragonite layers highly similar to the nacreous layer, once adsorbed onto the membrane of the water-insoluble matrix.  相似文献   

4.
5.
This study compares the expression levels of nacrein, N16, MSI60, Prismalin-14, aspein and MSI31 genes during the ontogeny of Pinctada fucata. Several novel findings were obtained: 1) The early calcitic prismatic layer was distinguished as a thin membrane-like structure. 2) Initial formation of the nacreous layer started from the mantle pallial region at the age of 31 days. 3) 18S rRNA of P. fucata was determined to be more suitable as a real-time PCR reference gene compared with GAPDH and β-actin genes. 4) A relationship was recognized between the expression levels of the above six organic matrix genes and biomineralization of the larval shell. The lack of calcite in the shells of the veliger and pediveliger stages, when MSI31 and Prismalin-14 genes were expressed, makes a role of polymorph control by these genes less likely. The hypothetical involvement of N16 and MSI60 proteins in aragonitic nacreous layer formation was corroborated by the expression levels of N16 and MSI60 genes during ontogeny. Our results are important with respect to the control of CaCO3 crystal polymorphism and shell microstructures in P. fucata.  相似文献   

6.
Signals and organic matrix proteins secreted from the mantle are critical for the development of shells in molluscs. Nacrein, which is composed of a carbonic anhydrase domain and a Gly-X-Asn repeat domain, is one of the organic matrix proteins that accumulates in shells. In situ hybridization revealed that nacrein was expressed in the outer epithelial cells of the mantle of the pearl oyster Pinctada fucata. The recombinant nacrein protein inhibited the precipitation of calcium carbonate from a saturated solution containing CaCl2 and NaHCO3, indicating that it can act as a negative regulator for calcification in the shells of molluscs. Because deletion of the Gly-X-Asn repeat domain of nacrein had a significant effect on the ability of nacrein to inhibit the precipitation of calcium carbonate, it is conceivable that the repeat domain has a primary role in the inhibitory function of nacrein in shell formation. Together these studies suggest that nacrein functions as a negative regulator in calcification in the extrapallial space between the shell and the mantle by inhibiting the precipitation of CaCO3.  相似文献   

7.
Organic matrix from molluscan shells has the potential to regulate calcium carbonate deposition and crystallization. Control of crystal growth thus seems to depend on control of matrix protein secretion or activation processes in the mantle cells, about which little is known. Biomineralization is a highly orchestrated biological process. The aim of this work was to provide information about the source of shell matrix macromolecule production, within the external epithelium of the mantle. An in vivo approach was chosen to describe the histologic changes in the outer epithelium and in blood sinus distribution, associated with mantle cells implicated in shell matrix production. Our results characterized a topographic and time-dependent zonation of matrix proteins involved in shell biomineralization in the mantle of Haliotis.  相似文献   

8.
Attention is focussed on a novel tool to study evolutionary trends in organisms. Emphasis is placed on the comparative biochemistry of shell proteins. It is tentatively concluded that the organic matrix of molluscan shells is predominantly a mixture of “secreted” collagen and k-m-e-f type proteins, and to a lesser extent of mucopolysaccharides. Each species has its characteristic organic pattern. Thus, the heterogeneity of calcified tissues can be related to molluscan phylogeny and evolution.  相似文献   

9.
Mantle tissue plays an important role in shell biomineralization by secreting matrix proteins for shell formation. However, the mechanism by which it regulates matrix protein secretion is poorly understood, largely because of the lack of cellular tools for in vitro study and techniques to evaluate matrix protein secretion. We have isolated the outer epithelial cells of the mantle of the pearl oyster, Pinctada fucata, and evaluated cellular metabolism by measuring the secretion of the matrix protein, nacrein. A novel sensitive sandwich enzyme-linked immunosorbent assay (ELISA) was established to quantify nacrein. Mantle explant culture was demonstrated to provide dissociated tissue cells with high viability. Single dissociated cell types from explant culture were separated by density in a discontinuous Percoll gradient. The outer epithelial cells were isolated from other cell types by their higher density and identified by immunolabeling and ultrastructure analysis. ELISA assays revealed that the outer epithelial cells retained the ability to secrete nacrein in vitro. Moreover, increased nacrein secretion resulted from an increased Ca(2+) concentration in the culture media of the outer epithelial cells, in a concentration-dependent manner. These results confirm that outer epithelial cell culture and the ELISA method are useful tools for studying the regulatory mechanisms of shell biomineralization.  相似文献   

10.
Mollusc shells are a result of the deposition of crystalline and amorphous calcite catalyzed by enzymes and shell matrix proteins (SMP). Developing a detailed understanding of bivalve mollusc biomineralization pathways is complicated not only by the multiplicity of shell forms and microstructures in this class, but also by the evolution of associated proteins by domain co-option and domain shuffling. In spite of this, a minimal biomineralization toolbox comprising proteins and protein domains critical for shell production across species has been identified. Using a matched pair design to reduce experimental noise from inter-individual variation, combined with damage-repair experiments and a database of biomineralization SMPs derived from published works, proteins were identified that are likely to be involved in shell calcification. Eighteen new, shared proteins likely to be involved in the processes related to the calcification of shells were identified by the analysis of genes expressed during repair in Crassostrea gigas, Mytilus edulis, and Pecten maximus. Genes involved in ion transport were also identified as potentially involved in calcification either via the maintenance of cell acid–base balance or transport of critical ions to the extrapallial space, the site of shell assembly. These data expand the number of candidate biomineralization proteins in bivalve molluscs for future functional studies and define a minimal functional protein domain set required to produce solid microstructures from soluble calcium carbonate. This is important for understanding molluscan shell evolution, the likely impacts of environmental change on biomineralization processes, materials science, and biomimicry research.  相似文献   

11.
How matrix proteins precisely control the growth of nacre lamellae is an open question in biomineralization research. Using the antibodies against matrix proteins for immunolabeling and in vivo experiments, we investigate the structural and functional roles of EDTA-soluble matrix (SM) and EDTA-insoluble matrix (ISM) proteins in nacre biomineralization of the pearl oyster Pinctada fucata. Immunolabeling reveals that a SM protein, nacrein, distributes within aragonitic tablets and intertabular matrix. An ISM protein, which we named P43, has been specifically recognized by polyclonal antibodies raised against the recombinant protein of P. fucata bone morphogenetic protein 2 in immunoblot analysis. Immunolabeling indicates that P43 is localized to interlamellar sheet, and also embedded within aragonitic tablets. Although nacrein and P43 both distribute within aragonitic tablets, they function differently in aragonitic tablet growth. When nacrein is suppressed by the antibodies against it in vivo, crystal overgrowth occurs, indicating that this SM protein is a negative regulator in aragonitic tablet growth. When P43 is suppressed in vivo, the organo-mineral assemblage is disrupted, suggesting that P43 is a framework matrix. Taken together, SM and ISM proteins are indispensable factors for the growth of nacre lamellae, controlling crystal growth and constructing the framework of aragonitic tablets.  相似文献   

12.
The numerous proteins occluded within the molluscan shell play a key role in the control of the mineralization process. Although extensively studied, these proteins are still poorly known, mainly because they are difficult to fractionate. In the present paper, we present, for the first time, a simple combined strategy for separating successfully large amounts of molluscan shell proteins. Since shell proteins do not absorb at 280 nm, our approach is based on the "blind" separation of these proteins by a preparative denaturing electrophoresis. They are subsequently detected on dot-blot with polyclonal antibodies raised against the unfractionated soluble matrix. In the present case, this approach allows one to collect enough purified proteins to obtain amino-acid composition as well as N-terminal sequences, and to perform in vitro tests and glycosylation studies. Furthermore, this method permits one to raise polyclonal antibodies against the isolated proteins.  相似文献   

13.
The ancestors of the molluscs are still unknown. Arguments in favour of flatworm-relationship are just as valid as those proposing segmented annelid-like worms as their closest relatives. The earliest molluscs lived before the onset of the Cambrian; but only at the end of this period the now existing classes of conchifers made their first appearance. Early and Middle Cambrian molluscan fossils are problematic. The hyoliths, for example, show relations to such fossils asSalterella andVolborthella, while closest living relatives can be found among tube-building annelids. Scars produced by tissue attached to the shell are of no use in the reconstruction of molluscan phylogeny, but a very useful tool in the analysis of the function regarding the body in interaction with its shell. The ontogenesis of the shell and muscles attached to it in recentFissurella (archaeogastropod) is presented as an example. Well known ontogenies in recent molluscs can aid to the reconstruction of fossils, demonstrated by some fossil gastropods. The interaction of soft and hard tissues, the function and structure of the shell of recent molluscs enables us to interpret the fossil forms, as for example the Lower Devonian coleoid cephalopods from the Hunsrück Schiefer. Reconstruction of the course of evolution is only possible, if information on living molluscs is integrated into historical data provided by the fossils.  相似文献   

14.
15.
A major shell matrix protein originally obtained from a freshwater snail is a molluscan homologue of Dermatopontins, a group of Metazoan proteins also called TRAMP (tyrosine-rich acidic matrix protein). We sequenced and identified 14 molluscan homologues of Dermatopontin from eight snail species belonging to the order Basommatophora and Stylommatophora. The bassommatophoran Dermatopontins fell into three types, one is suggested to be a shell matrix protein and the others are proteins having more general functions based on gene expression analyses. N-glycosylation is inferred to be important for the function involved in shell calcification, because potential N-glycosylation sites were found exclusively in the Dermatopontins considered as shell matrix proteins. The stylommatophoran Dermatopontins fell into two types, also suggested to comprise a shell matrix protein and a protein having a more general function. Phylogenetic analyses using maximum likelihood and Bayesian methods revealed that gene duplication events occurred independently in both basommatophoran and stylommatophoran lineages. These results suggest that the dermatopontin genes were co-opted for molluscan calcification at least twice independently after the divergence of basommatophoran and stylommatophoran lineages, or more recently than we have expected. [Reviewing Editor: Dr. David Pollock]  相似文献   

16.
We found a novel 52 kDa matrix glycoprotein MPP1 in the shell of Crassostrea nippona that was unusually acidic and heavily phosphorylated. Deduced from the nucleotide sequence of 1.9 kb cDNA, which is likely to encode MPP1 with high probability, the primary structure of this protein shows a modular structure characterized by repeat sequences rich in Asp, Ser and Gly. The most remarkable of these is the DE-rich sequence, in which continuous repeats of Asp are interrupted by a single Cys residue. Disulfide-dependent MPP1 polymers occurring in the form of multimeric insoluble gels are estimated to contain repetitive locations of the anionic molecules of phosphates and acidic amino acids, particularly Asp. Thus, MPP1 and its polymers possess characteristic features of a charged molecule for oyster biomineralization, namely accumulation and trapping of Ca2+. In addition, MPP1 is the first organic matrix component considered to be expressed in both the foliated and prismatic layers of the molluscan shell microstructure. In vitro crystallization assays demonstrate the induction of tabular crystals with a completely different morphology from those formed spontaneously, indicating that MPP1 and its polymers are potentially the agent that controls crystal growth and shell microstructure.  相似文献   

17.
18.
Polymer-driven crystallization   总被引:1,自引:0,他引:1  
Obtaining well-diffracting crystals of macromolecules remains a significant barrier to structure determination. Here we propose and test a new approach to crystallization, in which the crystallization target is fused to a polymerizing protein module, so that polymer formation drives crystallization of the target. We test the approach using a polymerization module called 2TEL, which consists of two tandem sterile alpha motif (SAM) domains from the protein translocation Ets leukemia (TEL). The 2TEL module is engineered to polymerize as the pH is lowered, which allows the subtle modulation of polymerization needed for crystal formation. We show that the 2TEL module can drive the crystallization of 11 soluble proteins, including three that resisted prior crystallization attempts. In addition, the 2TEL module crystallizes in the presence of various detergents, suggesting that it might facilitate membrane protein crystallization. The crystal structures of two fusion proteins show that the TELSAM polymer is responsible for the majority of contacts in the crystal lattice. The results suggest that biological polymers could be designed as crystallization modules.  相似文献   

19.
贝壳是一种具有优异力学性能的生物硬组织,贝壳基质蛋白质对贝壳的形成具有重要意义。厚壳贻贝(Mytilus coruscus)贝壳中发现一种类似胶原蛋白质的新型贝壳基质蛋白质,命名为collagen-like protein 2(CLP-2)。然而,该蛋白质的结构与功能以及对贝壳形成的影响机制尚不清楚。为此,本研究对CLP 2开展了序列分析;进一步采取密码子优化结合原核重组表达策略,开展了CLP-2的重组表达;在此基础上分析了重组CLP-2对酸钙结晶的诱导、结晶速率抑制以及碳酸钙结合能力。对CLP-2的序列分析结果表明,该蛋白质序列中含有信号肽及两个Von Willebrand factor A(VWA)结构域。CLP-2在数据库中尚无高同源性蛋白质存在,表明这是一种较为新颖的贝壳基质蛋白。所获得的重组CLP-2对碳酸钙体外结晶表现出明显的诱导作用,扫描电镜以及傅里叶红外光谱结果表明,重组CLP-2可诱导碳酸钙晶体的形貌由立方体形转化为球形,并在高浓度下进一步转化为哑铃形;同时,重组CLP-2可促使碳酸钙晶体的晶型由方解石型向文石型转化;重组CLP-2在体外具有碳酸钙晶体结合作用;此外,重组CLP-2能显著抑制碳酸钙晶体的结晶速度(P<0.01),并具有浓度依赖性。上述结果表明,厚壳贻贝贝壳CLP-2蛋白质在贝壳,特别是文石型肌棱柱层的生物矿化过程中具有重要作用。上述研究为深入了解贻贝贝壳的形成机制,以及胶原类蛋白质对生物矿化过程的影响奠定了基础。  相似文献   

20.

Background  

The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号