首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sugar-unspecific nuclease has been purified 260-fold from barley malt diastase. The enzyme, a glycoprotein of 37 000 MW, is highly active on single-stranded polynucleotides at pH 5–6. The nuclease is inhibited by several adenine nucleotides, and it binds weakly to NADP-agarose and ATP-agarose.  相似文献   

2.
A ribonuclease isolated from barley malt roots exhibited characteristics that conformed to those of RNase I (EC 3.1.27.1). It differed from RNase I from barley leaves and barley seeds in its action on polynucleotides and on 3′,5′-dinucleoside monophosphates, and from barley seed RNase I in its optimum pH. Gel electrophoresis indicated that the enzyme was present in the embryo, roots, shoot and endosperm of germinating barley. The enzyme showed pH optimum at 5.0, isoclectric pH at 4.5, a thermal optimum of 50°, and an apparent molocular weight of 19 000.  相似文献   

3.
Summary Epithelial cells derived from bovine pancreatic duct have been grown continuously in culture for 30 weeks (approximately 90 doublings of the cell population). The cells were grown in Eagle's minimal essential medium supplemented with 10% heat-inactivated fetal bovine serum, 2 mM glutamine, 0.1 mM nonessential amino acids, and antibiotics. In confluent cultures, the cells are multilayered and form circular structures. When tested at various passages, the cells neither formed colonies in soft agar nor produced tumors after inoculation into athymic, nude mice. Hydrocortisone (1 and 5 μg per ml) and insulin (1,5 and 10 μg per ml) had no effect on the growth of the cells. β-Retinyl acetate inhibited growth rate and cell yield at a concentration of 5 μg per ml but was not growth-inhibitory at lower concentrations. By electron microscopy the cells have numerous mitochondria, Golgi and microvilli. Mucous droplets were observed in a small proportion of the cells. Desmosome-like structures and occluding junctions were observed more frequently between cells that had been transferred as aggregates than between cells transferred as single cells. Cytochemical studies indicated that some cells produce PAS positive granules that were not removed after treatment of the cultures with diastase. Eleven cell clones were isolated from the mass culture. The growth rates of the clones are different as well as the period of time in which the clones can be propagated in vitro. This work was supported in part by Y01 CP 60204 and N01 CP 43237.  相似文献   

4.
5.
Catechol oxidase was distributed in soluble and particulate fractions of Solanum melongena. The purified preparation appears to be homogeneous by polyacrylamide gel electrophoresis. The enzyme shows two pH maxima—with catechol, 6.5 and 7.5; and with dopa, 6.5 and 7.9. The latent form of the enzyme does not occur in S. melongena. The preparation resembles the enzyme from other sources in substrate specificity towards various mono- and diphenols, having a higher affinity for catechol than dopa; this tendency increases on purification. The cresolase activity decreases with purification and a lag period with p-cresol is observed. The oxidation of mono- and diphenols is inhibited by ascorbic acid, sulphydryl compounds and chelating agents.  相似文献   

6.
A Wadano  P A Hobus  T H Liao 《Biochemistry》1979,18(19):4124-4130
A new procedure has been devised for the purification of ovine DNase, including (NH/4)2SO4 fractionation, two steps of CM-cellulose chromatography, concanavalin A-agarose chromatography, and gel filtration on Sephadex G--100. The enzyme, like bovine DNase, exhibits multiplicity due to changes in the primary structure and the sugar structure of the carbohydrate moiety. Unlike bovine DNase, ovine DNase does not have sialic acid in any of its multiple forms. Concanavalin A-agarose is useful in the purification of not only ovine but also bovine DNase. For ovine DNase, it is a necessary and key step of purification; for bovine DNase, it can be used to purify commercial preparations of DNase free from proteases in a single step as judged by its stability in Ca2+-free media at pH 8.0. The purified enzyme has a specific activity equal to that of a highly purified DNase and presumably contains predominantly DNases A and C. Two of the four forms of ovine DNase have been purified to apparent homogeneity and subjected to chemical analysis. The present results show that bovine and ovine DNases have indistinguishable molecular weights and identical end groups, suggesting that they may have the same number of amino acid residues. The amino acid composition indicates that two enzymes may have six residues of amino acids subject to substitution which can be explained by single base changes in their genetic code words. Amino acid analyses also indicate that the most likely difference between two forms of ovine DNase is the substitution of Leu for Arg.  相似文献   

7.
The impact of high hydrostatic pressure and temperature on the stability and catalytic activity of alpha-amylase from barley malt has been investigated. Inactivation experiments with alpha-amylase in the presence and absence of calcium ions have been carried out under combined pressure-temperature treatments in the range of 0.1-800 MPa and 30-75 degrees C. A stabilizing effect of Ca(2+) ions on the enzyme was found at all pressure-temperature combinations investigated. Kinetic analysis showed deviations of simple first-order reactions which were attributed to the presence of isoenzyme fractions. Polynomial models were used to describe the pressure-temperature dependence of the inactivation rate constants. Derived from that, pressure-temperature isokinetic diagrams were constructed, indicating synergistic and antagonistic effects of pressure and temperature on the inactivation of alpha-amylase. Pressure up to 200 MPa significantly stabilized the enzyme against temperature-induced inactivation. On the other hand, pressure also hampers the catalytic activity of alpha-amylase and a progressive deceleration of the conversion rate was detected at all temperatures investigated. However, for the overall reaction of blocked p-nitrophenyl maltoheptaoside cleavage and simultaneous occurring enzyme inactivation in ACES buffer (0.1 M, pH 5.6, 3.8 mM CaCl(2)), a maximum of substrate cleavage was identified at 152 MPa and 64 degrees C, yielding approximately 25% higher substrate conversion after 30 min, as compared to the maximum at ambient pressure and 59 degrees C.  相似文献   

8.
Sucrose-phosphate synthase SPS; (EC 2.4.1.14) from maize (Zea mays L. cv. Pioneer 3184) leaves was partially purified and kinetically characterized. Maize SPS was activated by glucose-6-phosphate (G-6-P) due to an increase in Vmax and a decrease in the Km for UDP-glucose. The UDP-glucose saturation profile was biphasic; thus two Km values for UDP-glucose were calculated. Inhibition by inorganic phosphate was observed only in the presence of G-6-P. Chromatography of partially purified maize leaf extracts on hydroxyapatite resolved two forms of SPS activity, which differed in their affinity for UDP-glucose and in the degree of activation by G-6-P. SPS was partially purified from maize leaves that were harvested in the light and in the dark. The light enzyme had a higher specific activity than the enzyme isolated from dark harvested leaves, and this difference persisted during enzyme purification. The apparent molecular weight (Stokes radius) of the light enzyme was 547 kDa, which was greater than that of the dark enzyme (457 kDa). Light and dark SPS differed in their affinities for UDP-glucose in the absence G-6-P. Both the light and the dark SPS were activated by G-6-P; the Km for UDP-glucose of the light enzyme was lowered by G-6-P, while the Km for UDP-glucose for the dark enzyme remained unchanged. These results suggest that light activation involves a conformational change that results in differences in maximum velocity, substrate affinities and regulation by metabolites. Chromatography of either the light or dark SPS on hydroxyapatite yielded two peaks of enzyme activity, suggesting that the occurrence of the two activity peaks was not due to an interconversion of the light and dark forms.  相似文献   

9.
Malic enzyme (ME=L-malate: NADP oxidoreductase; E.C. 1.1.1.40) was extracted by Triton X-100-induced resolubilization of enzyme proteins which denaturize spontaneously upon homogenization of grape berry material. The purification procedure included fractionating with (NH4)2SO4, preparative IEF, and Sephadex G-100 chromatography. ME was identified by TLC of the radioactive product after supplementing the assay mixture with [14C]malate. Cofactor dependence, pH-optimum and affinities for substrates and cosubstrates were determined. Enzymic pI was found to be 5.8, the Hill coefficients range from 1 to 3. In malate decarboxylating direction at pH 7.4, grape ME displayed positive cooperativity toward the substrate, the curve approaching normal Michaelis-Menten-kinetics at pH 7.0. Substituting Mn2+ for Mg2+ not only increased maximal turnover rates, but also enzymic affinity for malate. These features were considered indicative of the regulatory properties of the enzyme. Their relevance for grape malate metabolism and fruit ripening is discussed.Abbreviations EDTA ethylenediaminetetraacetic acid - IFF isoelectric focusing - MDH malate dehydrogenase - ME malic enzyme - OAA oxaloacetic acid - PAG polyacrylamide gel - TCA trichloroacetic acid - TLC thin layer chromatography  相似文献   

10.
β-N-Acetylaminoglucohydrolase (β-2-acetylamino-2-deoxy-D-glucoside acetylaminodeoxyglucohydrolase, EC 3.2.1.30) was extracted from malted barley and purified. The partially purified preparation was free from α-and β-glucosidase, α- and β-galactosidase, α-mannosidase and β-mannosidase. This preparation was free from α-mannosidase only after affinity chromatography with p-amino-N-acetyl-β-D-glucosaminidine coupled to Sepharose. The enzyme was active between pH 3 and 6.5 and had a pH optimum at pH 5. A MW of 92000 was obtained by sodium dodecyl sulfate-acrylamide gel electrophoresis and a sedimentation coefficient of 4.65 was obtained from sedimentation velocity experiments. β-N-Acetylaminoglucohydrolase had a Km of 2.5 × 10?4 M using the p-nitrophenyl N-acetyl β-D-glucosaminidine as the substrate.  相似文献   

11.
12.
UDP-glucuronosyltransferase (EC 2.4.1.17) activity was solubilized from male Wistar rat liver microsomal fraction in Emulgen 911, and six fractions with the transferase activity were separated by chromatofocusing on PBE 94 (pH 9.4 to 6.0). Fraction I was further separated into Isoforms Ia, Ib and Ic by affinity chromatography on UDP-hexanolamine-Sepharose 4B. UDP-glucuronosyltransferase in Fraction III was further purified by rechromatofocusing (pH 8.7 to 7.5). UDP-glucuronosyltransferases in Fractions IV and V were purified by UDP-hexanolamine-Sepharose chromatography. The transferase isoforms in Fractions II, III, IV and V were finally purified by h.p.l.c. on a TSK G 3000 SW column. Purified UDP-glucuronosyltransferase Isoforms Ia (Mr 51,000), Ib (Mr 52,000), Ic (Mr 56,000), II (Mr 52,000), IV (Mr 53,000) and V (Mr 53,000) revealed single Coomassie Blue-stained bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Isoform III enzyme showed two bands of Mr 52,000 and 53,000. Comparison of the amino acid compositions by the method of Cornish-Bowden [(1980) Anal. Biochem. 105, 233-238] suggested that all UDP-glucuronosyltransferase isoforms are structurally related. Reverse-phase h.p.l.c. of tryptic peptides of individual isoforms revealed distinct 'maps', indicating differences in primary protein structure. The two bands of Isoform III revealed distinct electrophoretic peptide maps after limited enzymic proteolysis. After reconstitution with phosphatidylcholine liposomes, the purified isoforms exhibited distinct but overlapping substrate specificities. Isoform V was specific for bilirubin glucuronidation, which was not inhibited by other aglycone substrates. Each isoform, except Ia, was identified as a glycoprotein by periodic acid/Schiff staining.  相似文献   

13.
The principal ribonuclease from young barley plants was purified 29 200-fold by a six-step procedure. The enzyme showed a high specific activity (15 5OO ΔA260 units/min/mg protein) and a molecular weight of about 25 000 was indicated by gel filtration and equilibrium sedimentation. Kinetic analysis of the cleavage of dinucleoside monophosphates and of yeast RNA indicated a base preference of Gua > Ade ≥ Ura ? Cyt, and was sensitive to the base located on either side of the phosphodiester bond. The enzyme resembles the Type I class of plant ribonucleases (E.C. 2.7.7.x).  相似文献   

14.
An alkaline 5-phosphodiesterase (5-PDE) from barley (Hordeum distichum) malt sprouts was partially purified by thermal treatment and acetone precipitation to diminish phosphomonoesterase (PME) activity. 5-PDE was purified 40-fold to a specific activity of 30 U mg–1 protein with a final yield of about 32%. With synthetic substrate, the enzyme had an optimum pH of 8.9, maximum activity at 70 °C over 10 min, and a Km of 0.26 mM. The partially purified enzyme was activated by 10 mM Mg2+ up to 168% of the original activity, while Zn2+, Mn2+ and Cu2+ ions, chelating agent (EDTA) and NaN3 (1–10 mM), and 5-ribonucleotides (1–5 mM) were inhibitory. Final enzyme preparation was stable over 8 d at 4 °C), at 70 °C for up to 120 min and without loss of activity over 90 d at –18 °C.  相似文献   

15.
A simple procedure for the isolation of cathepsin-B from bovine pancreas employing ammonium sulphate fractionation, DEAE cellulose chromatography and Sephadex G-200 gel filtration is described. The purified enzyme gave a single band on polyacrylamide gel electrophoresis. The molecular weight as determined by gel filtration of the enzyme was 26,850. ItsK m andV max values were 12.8 mM and 0.303 Μmol/min/mg, respectively. TheK i for iodoacetamide was 0.16 mM.  相似文献   

16.
The Z protein fraction of rat liver cytosol contains one or more proteins which have been associated with organic anion transport, fatty acid metabolism, and aminoazodye binding. To study the possible identity of these proteins and investigate their function, Z was purified using ammonium sulfate fractionation, gel filtration, and preparative isoelectric focusing. Three protein fractions were obtained (pI 5.2, 6.0, 7.3) which reacted specifically with anti-Z IgG. These three fractions were homogenous as determined by several electrophoretic systems. Monospecific antibody prepared against two of the proteins cross-reacted specifically with all three. Each fraction bound BSP with different affinity; acidic Z bound the least BSP. The molecular weight of each fraction was 12,500 as determined by SDS-gel electrophoresis. Amino acid analyses of the three Z protein bands were virtually identical. Heterogeneity in Z probably results from interaction of the protein with ampholytes or exogenous ligands.  相似文献   

17.
Glutathione S-transferase (GST) from oat seedlings was purified by ammonium sulfate precipitation and glutathione (GSH) affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of two major protein subunits with molecular masses of 29 and 31 kDa, respectively. Isoelectric focusing revealed a major band with pI of 3.43 and a minor band with pI of 7.42. Kinetic analysis with respect to 1-chloro-2,4-dinitrobenzene (CDNB) as substrate revealed a K m of 1.18 mM and V max of 0.94 mol/min and a specific activity of 17.96 mol/min/mg. Inhibition studies indicated that oat GST is strongly inhibited by chlorophyllin, hemin, and anthocyanin and only weakly by bilirubin and biliverdin.  相似文献   

18.
19.
Wheat ribulose-1,5-diphosphate carboxylase purified to homogeneity had a MW of 540 000, sedimentation coefficient (S20, W) of 18.5 S, apparent diffusion constant (Dapp) of 3.07 × 10?7 cm2/sec, Stoke's radius 5.44 nm, and fractional ratio of 1.17. Electron microscopy revealed particles of 10–12 nm diameter. The enzyme was dissociated by sodium dodecyl sulphate into two subunits of MW 53 000 (S20, W = 3.0 S) and 13 500 (S20, W = 1.7 S). The total amino acid residues in the large and small subunits were 481 and 117, respectively. Tryptic peptide maps of the two subunits confirmed the estimated numbers of Arg and Lys residues. Although the amino acid pattern of the large subunit closely resembled that from barley, rather than that for spinach, beet or tobacco, the pattern of the small subunit was markedly different from those of all the other species.  相似文献   

20.
A simple electrophoresis procedure was developed to detect glyoxalase-I variants in human erythrocytes by using a direct stain for glyoxalase-I activity. The multiple forms of glyoxalase-I were purified from human erythrocytes by a procedure involving ethanol;chloroform treatment to remove hemoglobin and chromatography on blue dextran affinity columns. Glyoxalase-I from individuals with homozygous phenotypes (GLO-1 or GLO-2) was more labile in this purification procedure than was glyoxalase-I from individuals with the heterozygous phenotype (GLO 2-1). Nevertheless, the various glyoxalase-I allozymes are indistinguishable, kinetically. In addition, the glyoxalase-I allozymes from human erythrocytes are kinetically similar to glyoxalase-I from other mammalian sources in that they exhibit broad substrate specificity for the hemimercaptals of glutathione and aliphatic or aromatic α-ketoaldehydes and function by rate-determining cleavage of the hemimercaptal C-H bond, as reflected in a primary isotope effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号