首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evaluation of lateral diffusion coefficients of membrane components by the technique of fluorescence recovery after photobleaching (FRAP) is often complicated by uncertainties in the values of the intensities F(O), immediately after bleaching, and F(infinity), after full recovery. These uncertainties arise from instrumental settling time immediately after bleaching and from cell, tissue, microscope, or laser beam movements at the long times required to measure F(infinity). We have developed a method for precise analysis of FRAP data that minimizes these problems. The method is based on the observation that a plot of the reciprocal function R(tau) = F(infinity)/[F(infinity)-F(tau)] is linear over a large time range when (a) the laser beam has a Gaussian profile, (b) recovery involves a single diffusion coefficient, and (c) there is no membrane flow. Moreover, the ratio of intercept to slope of the linear plot is equal to tau 1/2, the time required for the bleached fluorescence to rise to 50% of the full recovery value, F(infinity). The lateral diffusion coefficient D is related to tau 1/2 by tau 1/2 = beta w2/4D where beta is a defined parameter and w is the effective radius of the focused laser beam. These results are shown to indicate that the recovery of fluorescence F(tau) can be represented over a large range of percent bleach, and recovery time tau by the relatively simple expression F(tau) = [ F(o) + F(infinity) (tau/tau 1/2)]/[1 + tau/tau 1/2)]. FRAP data can therefore be easily evaluated by a nonlinear regression analysis with this equation or by a linear fit to the reciprocal function R(tau). It is shown that any error in F(infinity) can be easily detected in a plot of R(tau) vs. tau which deviates significantly from a straight line when F(infinity) is in error by as little as 5%. A scheme for evaluating D by linear analysis is presented. It is also shown that the linear reciprocal plot provides a simple method for detecting flow or multiple diffusion coefficients and for establishing conditions (data precision, differences in multiple diffusion coefficients, magnitude of flow rate compared to lateral diffusion) under which flow or multiple diffusion coefficients can be detected. These aspects are discussed in some detail.  相似文献   

2.
To investigate fluorescence lifetime spectroscopy in tissue-like scattering, measurements of phase modulation as a function of modulation frequency were made using two fluorescent dyes exhibiting single exponential decay kinetics in a 2% intralipid solution. To experimentally simulate fluorescence multiexponential decay kinetics, we varied the concentration ratios of the two dyes, 3,3-diethylthiatricarbocyanine iodide and indocynanine green (ICG), which exhibit distinctly different lifetimes of 1.33 and 0.57 ns, respectively. The experimental results were then compared with values predicted using the optical diffusion equation incorporating 1) biexponential decay, 2) average of the biexponential decay, as well as 3) stretched exponential decay kinetic models to describe kinetics owing to independent and quenched relaxation of the two dyes. Our results show that while all kinetic models could describe phase-modulation data in nonscattering solution, when incorporated into the diffusion equation, the kinetic parameters failed to likewise predict phase-modulation data in scattering solutions. We attribute the results to the insensitivity of phase-modulation measurements in nonscattering solutions and the inaccuracy of the derived kinetic parameters. Our results suggest the high sensitivity of phase-modulation measurements in scattering solutions may provide greater opportunities for fluorescence lifetime spectroscopy.  相似文献   

3.
A microscope-based system is described for directly measuring protein rotational motion in viscous environments such as cell membranes by polarized fluorescence depletion (PFD). Proteins labeled with fluorophores having a high quantum yield for triplet formation, such as eosin isothiocyanate (EITC), are examined anaerobically in a fluorescence microscope. An acousto-optic modulator generates a several-microsecond pulse of linearly polarized light which produces an orientationally-asymmetric depletion of ground state fluorescence in the sample. When the sample is then probed with light polarized parallel to the excitation pulse, fluorescence recovers over 0-1,000 microseconds as the sum of two exponentials. One exponential corresponds to triplet decay and the other to the rotational relaxation. An exciting pulse perpendicular to the probe beam is then applied. Fluorescence recovery following this pulse is the difference of the same two exponentials. Equations for fluorescence recovery kinetics to be expected in various experimentally significant cases are derived. Least-squares analysis using these equations then permits the triplet lifetime and rotational correlation time to be determined directly from PFD data. Instrumentation for PFD measurements is discussed that permits photobleaching recovery measurements of lateral diffusion coefficients using the same microscope system. With this apparatus, both rotational and translational diffusion coefficients (Dr, Dt) were measured for EITC-labeled bovine serum albumin in glycerol solutions. Values obtained for Dr and Dt are discussed in light of both the PFD models and the experimental system.  相似文献   

4.
The intensity and anisotropy decays of Wye base fluorescence from yeast tRNA(Phe) were determined by frequency-domain fluorometry. The intensity decay is at least a double exponential in the presence and absence of Mg2+, but the multi-exponential character of the decay is more pronounced in the absence of Mg2+. The anisotropy decay displays components due to overall tRNA rotational diffusion and to local torsional motions. The amplitude of the local motion is decreased 2-fold by the presence of Mg2+. The results are broadly consistent with a more homogeneous environment for the Wye base in the presence of Mg2+.  相似文献   

5.
I I Putrenko  S Vasil'ev  D Bruce 《Biochemistry》1999,38(33):10632-10641
The mechanism of flash-induced changes with a periodicity of four in photosystem II (PSII) fluorescence was investigated with the aim of further using fluorescence measurements as an approach to studying the structural and functional organization of the water-oxidizing complex (WOC). The decay of the flash-induced high fluorescence state of PSII was measured with pulse amplitude modulated fluorometry in thylakoids and PSII enriched membrane fragments. Calculated QA- decay was well described by three exponential decay components, reflecting QA- reoxidation with halftimes of 450 and 860 micros, 2 and 7.6 ms, and 111 and 135 ms in thylakoids and PSII membranes, respectively. The effect of modification of the PSII donor side by changing pH or by removal of the extrinsic 17 and 24 kDa proteins on period four oscillations in both maximum fluorescence yield and the relative contribution of QA- reoxidation reactions was compared to flash-induced oxygen yield. The four-step oxidation of the manganese cluster of the WOC was found to be necessary but not sufficient to produce modulation of PSII fluorescence. The capacity of the WOC to generate molecular oxygen was also required to observe a period four in the fluorescence; however, direct quenching by oxygen was not responsible for the modulation. Potential mechanisms responsible for the periodicity of four in both maximum fluorescence yield pattern and flash-dependent changes in proportion of centers with different QA- reoxidation rates are discussed with respect to intrinsic deprotonation events occurring at the WOC.  相似文献   

6.
A new method for the measurement of diffusion in thick samples is introduced, based upon the spatial Fourier analysis of Tsay and Jacobson (Biophys. J. 60: 360-368, 1991) for the video image analysis of fluorescence recovery after photobleaching (FRAP). In this approach, the diffusion coefficient is calculated from the decay of Fourier transform coefficients in successive fluorescence images. Previously, the application of FRAP in thick samples has been confounded by the optical effects of out-of-focus light and scattering and absorption by the sample. The theory of image formation is invoked to show that the decay rate is the same for both the observed fluorescence intensity and the true concentration distribution in the tissue. The method was tested in a series of macromolecular diffusion measurements in aqueous solution, in agarose gel, and in simulated tissue consisting of tumor cells (45% v/v) and blood cells (5% v/v) in an agarose gel. For a range of fluorescently labeled proteins (MW = 14 to 600 kD) and dextrans (MW = 4.4 to 147.8 kD), the diffusion coefficients in aqueous solution were comparable to previously published values. A comparison of the spatial Fourier analysis with a conventional direct photometric method revealed that even for the weakly scattering agarose sample, the conventional method gives a result that is inaccurate and dependent on sample thickness whereas the diffusion coefficient calculated by the spatial Fourier method agreed with published values and was independent of sample thickness. The diffusion coefficient of albumin in the simulated tissue samples, as determined by the spatial Fourier analysis, varied slightly with sample thickness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Fluorescence correlation spectroscopy (FCS) and photon-counting histogram (PCH) analysis use the same experimental fluorescence intensity fluctuations, but each analytical method focuses on a different property of the signal. The time-dependent decay of the correlation of fluorescence fluctuations is measured in FCS yielding, for instance, molecular diffusion coefficients. The amplitude distribution of these fluctuations is calculated by PCH analysis yielding information about the molecular brightness of fluorescent species. Analysis of both FCS and PCH results in the molecular concentration of the sample. Using a previously described global analysis procedure we report here precise, simultaneous measurements of diffusion constants and brightness values from single fluorescence fluctuation traces of green-fluorescent protein (GFP, S65T) in the cytoplasm of Dictyostelium cells. The use of a polynomial profile in PCH analysis, describing the detected three-dimensional shape of the confocal volume, enabled us to obtain well fitting results for GFP in cells. We could visualize the polynomial profile and show its deviation from a Gaussian profile.  相似文献   

9.
利用竹红菌乙素自身的荧光特征,在FPR装置上直接测定了乙素在AH细胞内的侧向扩散系数和荧光漂白的恢复率。实验结果表明乙素在AH细胞内的扩散系数D=3.2×10^-9cm^2/s^-1荧光漂白恢复比率R=97.8%,上述实验说明乙素在细胞膜内与生物大分子之间没有形成共价键形式的结合状态。  相似文献   

10.
We have employed fluorescence photobleaching recovery to demonstrate selective immobilization of lymphocyte membrane proteins by localized concanavalin A (ConA) binding to the cell surface. Localized ConA binding was achieved by the binding of ConA coupled to paraformaldehyde-fixed platelets to mouse spleen lymphocytes. The effect of the localized cross-linking of ConA receptors on the lateral mobility of specific membrane proteins at regions distal to the ConA platelets was investigated. The diffusion of surface immunoglobulins and ConA receptors was inhibited above a threshold coverage (12%) of the upper lymphocyte surface by ConA platelets. In contrast, no effect was observed on the diffusion and aggregation of mouse histocompatibility antigens (H-2Kk) labeled with a fluorescent monoclonal antibody. Since the ConA modulation was shown to propagate through the cytoskeleton, these results indicate specificity in the interactions of membrane proteins with the cytoskeleton. This specificity enables a selective response of different membrane proteins to the ConA anchorage modulation.  相似文献   

11.
The translational mobility of proteins and lipids in phospholipid bilayers is often not well described as ideal self diffusion. One of the best methods for characterizing such non-ideal diffusion is to use fluorescence pattern photobleaching recovery. In this method, the spatial gradient of the monitoring and bleaching intensity is created by using epi-fluorescence and an expanded Gaussian-shaped laser beam which passes though a Ronchi ruling placed at the back image plane of a microscope. A difficulty arises when the fluorescence recovery from the exchange of slowly diffusing molecules between illuminated and non-illuminated stripes temporally overlaps with the recovery from the exchange of more rapidly diffusing molecules through the gradient produced by the broad Gaussian shape of the illumination. In the work presented here, a general theory is developed that describes the shape of the resulting fluorescence recovery curve for these typical experimental conditions. Approximate expressions amenable to non-linear curve fitting are also given. The new theoretical formalism has been demonstrated on data for the translational mobility of a fluorescent lipid probe in phospholipid bilayers deposited on planar-fused silica substrates.  相似文献   

12.
Time correlated single photon counting measurements of tryptophan (Trp) fluorescence intensity decay and other spectroscopic studies were performed on glutamine-binding protein (GlnBP) from Escherichia coli. Using site-specifically mutated forms of the protein in which tyrosine (Tyr) and phenylalanine (Phe) substitute for the Trp residues at positions 32 and 220, we have examined whether wild-type (Wtyp) intensity decay components may be assigned to specific Trp residues. Results indicate that: (a) two exponential intensity decay components are recovered from the Wtyp protein (6.16 ns, 0.46 ns); (b) the long decay component arises from Trp-220 and comprises greater than 90% of the total fluorescence emission; (c) the short component arises from Trp-32 and is highly quenched; (d) all four single-Trp mutants exhibit multiexponential intensity decays, yet equimolar mixtures of two single-Trp mutants yield only two decay components which are virtually indistinguishable from the Wtyp protein; (e) the recovery of additional components in protein mixtures is obscured by statistical noise inherent in the technique of photon counting; (f) various spectroscopic measurements suggest that Trp-Trp interactions occur in the Wtyp protein, but the Wtyp intensity decay may be closely approximated by a linear combination of intensity decays from single-Trp mutants; and (g) inferences derived independently from fluorescence and NMR spectroscopy which pertain to the presence of Trp-Trp interactions and the relative solvent exposure of the two Trp residues are in agreement.  相似文献   

13.
The lateral diffusion coefficient of ganglioside GM1 incorporated into preformed dimyristoylphosphatidylcholine (DMPC) vesicles has been investigated under a variety of conditions using the technique of fluorescence photobleaching recovery. For these studies the fluorescent probe 5-(((2-Carbohydrazino)methyl)thio)acetyl) amino eosin was covalently attached to the periodate-oxidized sialic acid residue of ganglioside GM1. This labeled ganglioside exhibited a behavior similar to that of the intact ganglioside, and was able to bind cholera toxin. The lateral diffusion coefficient of the ganglioside was dependent upon the gel-liquid crystalline transition of DMPC. Above Tm the lateral diffusion coefficient of the ganglioside was 4.7 X 10(-9) cm2 s-1 (with greater than 80% fluorescence recovery). This diffusion coefficient is significantly slower than the one previously observed for phospholipids in DMPC bilayers. The addition of increasing amounts of ganglioside, up to a maximum of 10 mol %, did not have a significant effect on the lateral diffusion coefficient or in the percent recovery. At 30 degrees C, the lateral mobility of ganglioside GM1 was not affected by the presence of 5 mM Ca2+, suggesting that, at least above Tm, Ca2+ does not induce a major perturbation in the lateral organization of the ganglioside molecules. The addition of stoichiometric amounts of cholera toxin to samples containing either 1 or 10 mol % ganglioside GM1 produced only a small decrease in the measured diffusion coefficient. The fluorescence recovery after photobleaching experiments were complemented with excimer formation experiments using pyrene-phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have studied the effect of cell density on the lateral diffusion of major histocompatibility (MHC) antigens in the plasma membranes of fibroblasts using fluorescence recovery after photobleaching. The percent recovery of fluorescence was decreased in fibroblasts grown in confluent cultures. While recovery of fluorescence was measurable in greater than 90% of the cells from sparse cultures, measurable recovery was detected in only 60-80% of the cells from dense cultures; no mobile antigens were detectable in 20-40% of cells examined. The diffusion coefficient on human skin fibroblast cells that did show recovery was the same for cells grown in sparse or dense conditions. In WI-38, VA-2, and c1 1d cultures the diffusion coefficients of mobile antigens were smaller in cells from dense cultures. Changes in lateral diffusion occurred with increased cell-cell contact and with age of cell culture but were not observed in growth-arrested cells or in sparse cells cultured in medium conditioned by confluent cells. Decreased mobile fractions of MHC antigens were observed when cells were plated on extracellular matrix materials derived from confluent cultures. Treatment of the extracellular matrix materials with a combination of proteolytic enzymes or by enzymes that degrade proteoglycans abolished this effect. Matrices produced by cells from other cell lines were less effective in inducing changes in mobile fractions and purified matrix components alone did not induce changes in lateral diffusion. Finally, there were no differences in the proportion of MHC antigens that were resistant to Triton X-100 extraction in sparse and dense cells. These results suggest that cell-cell interactions mediated through extracellular matrix materials can influence the lateral diffusion of at least part of the population of MHC antigens.  相似文献   

15.
Surface diffusion of bovine serum albumin absorbed from aqueous solution to poly(methylmethacrylate) surfaces is significantly hindered by protein-protein lateral interactions. The long-time self diffusion coefficient measured by fluorescence recovery after pattern photobleaching decreases by approximately one order of magnitude as the surface area fraction occupied by protein increases from 0.10 to 0.69. Qualitative features of the surface concentration dependence of the self diffusion coefficient can be described by several recent models for lateral diffusion of interacting species. The mobile fraction is independent of the surface concentration, and both the self diffusion coefficient and the mobile fraction are constant between 15 min and 7 h of adsorption.  相似文献   

16.
17.
A monoclonal antibody (MVS-1) was used to monitor the lateral mobility of a defined component (Mr approximately 400,000) of the plasma membrane of soybean protoplasts prepared from suspension cultures of Glycine max (SB-1 cell line). The diffusion coefficient (D) of antibody MVS-1 bound to its target was determined (D = 3.2 X 10(-10) cm2/s) by fluorescence redistribution after photobleaching. Pretreatment of the protoplasts with soybean agglutinin (SBA) resulted in a 10-fold reduction of the lateral mobility of antibody MVS-1 (D = 4.1 X 10(-11) cm2/s). This lectin-induced modulation could be partially reversed by prior treatment of the protoplasts with either colchicine or cytochalasin B. When used together, these drugs completely reversed the modulation effect induced by SBA. These results have refined our previous analysis of the effect of SBA on receptor mobility to the level of a defined receptor and suggest that the binding of SBA to the plasma membrane results in alterations in the plasma membrane such that the lateral diffusion of other receptors is restricted. These effects are most likely mediated by the cytoskeletal components of the plant cell.  相似文献   

18.
The translational mobility of fluorescent-labeled monoclonal antibodies specifically bound to supported phospholipid bilayers containing hapten-conjugated phospholipids has been measured as a function of the surface concentration of bound antibodies using fluorescence recovery after photobleaching. Fluorescence recovery curves are fit well by a model that assumes the presence of two populations of antibodies with different lateral diffusion coefficients. The larger diffusion coefficient equals 3.5 x 10(-9) cm2/s, the smaller diffusion coefficient ranges from 1.5 x 10(-9) cm2/s to 2.5 x 10(-10) cm2/s, and the fractional fluorescence recovery associated with the smaller coefficient increases from approximately 0 to approximately 0.7 with increasing concentration of bound antibody. These results suggest that complexes of haptenated phospholipids and antibodies in phospholipid Langmuir-Blodgett films form clusters or domains in a concentration-dependent fashion.  相似文献   

19.
Steady-state and time-resolved fluorescence spectroscopy has been used to examine lateral diffusion in dipalmitoyl-L-alpha-phosphatidylcholine (DPPC) and dimyristoyl-L-alpha-phosphatidylcholine (DMPC) monolayers at the air-water interface, by studying the fluorescence quenching of a pyrene-labeled phospholipid (pyrene-DPPE) by two amphiphilic quenchers. Steady-state fluorescence measurements revealed pyrene-DPPE to be homogeneously distributed in the DMPC lipid matrix for all measured surface pressures and only in the liquid-expanded (LE) phase of the DPPC monolayer. Time-resolved fluorescence decays for pyrene-DPPE in DMPC and DPPC (LE phase) in the absence of quencher were best described by a single-exponential function, also suggesting a homogeneous distribution of pyrene-DPPE within the monolayer films. Addition of quencher to the monolayer film produced nonexponential decay behavior, which is adequately described by the continuum theory of diffusion-controlled quenching in a two-dimensional environment. Steady-state fluorescence measurements yielded lateral diffusion coefficients significantly larger than those obtained from time-resolved data. The difference in these values was ascribed to the influence of static quenching in the case of the steady-state measurements. The lateral diffusion coefficients obtained in the DMPC monolayers were found to decrease with increasing surface pressure, reflecting a decrease in monolayer fluidity with compression.  相似文献   

20.
A pH-sensing dye, carboxy seminaphthofluorescein-1 (C-SNAFL-1), was immobilized in poly(ethylene glycol) (PEG) microparticles via ester-amine reaction. Following photopolymerization, the hydrogel particles were then immersed in buffered pH solutions of varying pH with added polystyrene. Measurements of phase shift and amplitude attenuation of the generated and multiply scattered fluorescent light were attained as a function of modulation frequency of the incident excitation light. Upon regressing the measured data to the coupled optical diffusion equations, the average lifetimes of protonated and deprotonated forms of C-SNAFL-1 were obtained and compared to the values acquired from conventional fluorescence lifetime spectroscopy in nonscattering media. The results demonstrate the ability to perform analyte sensing with fluorescence lifetime without the confounding effect of fluorophore loading or the use of a "reference" measurement within multiply scattering systems. When extended to the immobilized fluorophore-enzymatic systems, fluorescence lifetime spectroscopy with multiply scattered light may provide a new ultrasensitive approach for analyte or toxin screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号