首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several Drosophila receptor-linked protein tyrosine phosphatases (R-PTPs) are selectively expressed on axons of the developing embryonic central nervous system. The extracellular domains of these axonal R-PTPs are homologous to neural adhesion molecules. Thus, R-PTPs may directly couple cell recognition to signal transduction via control of tyrosine phosphorylation. To examine the function of these molecules during nervous system development, we wished to generate mutations in R-PTP genes. It was unclear whether a mutation in a single R-PTP gene would confer lethality, however, because the similarities in sequence and expression pattern between the axonal R-PTPs suggest that they may have partially redundant functions. To circumvent this problem, we developed a directed mutagenesis strategy based on local transposition of P elements, and used this approach to isolate a null mutation in the DPTP99A gene. This strategy, which we describe in detail here, should be applicable to any Drosophila gene within a lettered division of an appropriately marked P element. Flies lacking DPTP99A expression are viable and fertile, and we have been unable to detect any alterations in the embryonic nervous system of DPTP99A embryos using a variety of antibody markers.  相似文献   

2.
Protein tyrosine phosphorylation is an important regulatory mechanisms in cell physiology. While the protein tyrosine kinase (PTKase) family has been extensively studied, only six protein tyrosine phosphatases (PTPases) have been described. By Southern blot analysis, genomic DNA from several different phyla were found to cross-hybridize with a cDNA probe encoding the human leukocyte-common antigen (LCA; CD45) PTPase domains. To pursue this observation further, total mRNA from the protochordate Styela plicata was used as a tempalte to copy and amplify, using polymerase chain reaction (PCR) technology, PTPase domains. Twenty-seven distinct sequences were identified that contain hallmark residues of PTPases; two of these are similar to described mammalian PTPases. Southern blot analysis indicates that at least one other Styela sequence is highly conserved in a variety of phyla. Seven of the Styela domains have significant similarity to each other, indicating a subfamily of PTPases. However, most of the sequences are disparate. A comparison of the 27 Styela sequences with the ten known PTPase domain sequences reveals that only three residues are absolutely conserved and identifies regions that are highly divergent. The data indicate that the PTPase family will be equally as large and diverse as the PTKases. The extent and diversity of the PTPase family suggests that these enzymes are, in their own right, important regulators of cell behavior.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M37986-M38041.  相似文献   

3.
Signaling by receptor tyrosine kinases (RTKs) is critical for a multitude of developmental decisions and processes. Among the molecules known to transduce the RTK-generated signal is the nonreceptor protein tyrosine phosphatase Corkscrew (Csw). Previously, Csw has been demonstrated to function throughout the Drosophila life cycle and, among the RTKs tested, Csw is essential in the Torso, Sevenless, EGF, and Breathless/FGF RTK pathways. While the biochemical function of Csw remains to be unambiguously elucidated, current evidence suggests that Csw plays more than one role during transduction of the RTK signal and, further, the molecular mechanism of Csw function differs depending upon the RTK in question. The isolation and characterization of a new, spontaneously arising, viable allele of csw, csw(lf), has allowed us to undertake a genetic approach to identify loci required for Csw function. The rough eye and wing vein gap phenotypes exhibited by adult flies homo- or hemizygous for csw(lf) has provided a sensitized background from which we have screened a collection of second and third chromosome deficiencies to identify 33 intervals that enhance and 21 intervals that suppress these phenotypes. We have identified intervals encoding known positive mediators of RTK signaling, e.g., drk, dos, Egfr, E(Egfr)B56, pnt, Ras1, rolled/MAPK, sina, spen, Src64B, Star, Su(Raf)3C, and vein, as well as known negative mediators of RTK signaling, e.g., aos, ed, net, Src42A, sty, and su(ve). Of particular interest are the 5 lethal enhancing intervals and 14 suppressing intervals for which no candidate genes have been identified.  相似文献   

4.
The homogeneous recombinant mammalian protein tyrosine phosphatase 1B (PTP1B) and Yersinia protein tyrosine phosphatase (PTPase) are inactivated by a series of low-molecular-weight S-nitrosothiols. These compounds exhibited different inhibitory activities in a time- and concentration-dependent manner with second-order rate constants (k(inact)/K(I)) ranging from 37 to 113 M(-1) min(-1) against mammalian PTP1B and from 66 to 613 M(-1) min(-1) against Yersinia PTPase. Furthermore, the inactivation of Yersinia PTPase by S-nitrosylated protein:S-nitroso human serum albumin was investigated. Both single-S-nitrosylated and poly-S-nitrosylated human serum albumin show good inhibitory ability to Yersinia PTPase. The second-order rate constants are 472 and 1188 M(-1) min(-1), respectively. This result indicates a possibility that S-nitrosylated albumin in vivo may function as an inhibitor for a variety of cysteine-dependent enzymes.  相似文献   

5.
The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.  相似文献   

6.
Two highly sensitive, nonradiolabeled assays for protein phosphotyrosine phosphatase (PTPase) have been developed. The first assay is based on the use of chemically synthesised phosphotyrosine-containing peptides that can be separated from the dephosphorylated peptide products by HPLC. In this assay, partially purified placental PTPase 1B dephosphorylated three dodecaphosphopeptides (corresponding to insulin receptor autophosphorylation sites at positions PY1146, PY1150, and PY1151) with approximately equal affinity (Km 1.3-2.5 microM), indicating that PTPase 1B shows no distinct preference for the site of dephosphorylation in these peptides. The second assay employs either a phosphopeptide or an autophosphorylated tyrosine kinase domain immobolized on microtiter plate wells. After reaction with PTPase, the remaining unconverted phosphosubstrate is detected in an ELISA using anti-phosphotyrosine antibodies. The latter assay was used to monitor PTPase activity during purification procedures and for characterizing PTPases. Modulation of PTPase activity by orthovanadate, heparin, Zn2+, and EDTA gave similar results in both assays. The immobilized autophosphorylated IR tyrosine kinase domain was a poor substrate for bovine liver alkaline phosphatase and seminal fluid acid phosphatase. The second assay also offers the potential for comparing PTPase activity toward several autophosphorylated tyrosine kinase domains, including those of the insulin, epidermal growth factor, and platelet-derived growth factor receptors.  相似文献   

7.
Cloning and expression of a yeast protein tyrosine phosphatase.   总被引:6,自引:0,他引:6  
To study the regulation of tyrosine phosphorylation/dephosphorylation in Saccharomyces cerevisiae, a protein tyrosine phosphatase (PTPase) was cloned by the polymerase chain reaction (PCR). Conserved amino acid sequences within the mammalian PTPases were used to design primers which generated a yeast PCR fragment. The sequence of the PCR fragment encoded a protein with homology to the mammalian PTPases. The PCR fragment was used to identify the yeast PTP1 gene which has an open reading frame encoding a 335-amino acid residue protein. This yeast PTPase shows 26% sequence identity to the rat PTPase, although highly conserved residues within the mammalian enzymes are invariant in the yeast protein. The yeast PTP1 is physicallt linked to the 5'-end of a heat shock gene SSB1. This yeast PTP1 gene was expressed in Escherichia coli and obtained in a highly purified form by a single affinity chromatography step. The recombinant yeast PTPase hydrolyzed phosphotyrosine containing substrates approximately 1000 times faster than a phosphoserine containing substrate. Gene disruption of yeast PTP1 has no visible effect on vegetative growth.  相似文献   

8.
P James  B D Hall  S Whelen  E A Craig 《Gene》1992,122(1):101-110
In higher eukaryotic organisms, the regulation of tyrosine phosphorylation is known to play a major role in the control of cell division. Recently, a wide variety of protein tyrosine phosphatase (PTPase)-encoding genes (PTPs) have been identified to accompany the many tyrosine kinases previously studied. However, in the yeasts, where the cell cycle has been most extensively studied, identification of the genes involved in the direct regulation of tyrosine phosphorylation has been difficult. We have identified a pair of genes in the yeast Saccharomyces cerevisiae, which we call PTP1 and PTP2, whose products are highly homologous to PTPases identified in other systems. Both genes are poorly expressed, and contain sequence elements consistent with low-abundance proteins. We have carried out an extensive genetic analysis of PTP1 and PTP2, and found that they are not essential either singly or in combination. Neither deletion nor overexpression results in any strong phenotypes in a number of assays. Deletions also do not affect the mitotic blockage caused by deletion of the MIH1 gene (encoding a positive regulator of mitosis) and induction of the heterologous Schizosaccharomyces pombe wee1+ gene (encoding a negative regulator of mitosis). Molecular analysis has shown that PTP1 and PTP2 are quite different structurally and are not especially well conserved at the amino acid sequence level. Low-stringency Southern blots indicate that yeast may contain a family of PTPase-encoding genes. These results suggest that yeast may contain other PTPase-encoding genes that overlap functionally with PTP1 and PTP2.  相似文献   

9.
Phosphorylation of proteins on tyrosine is crucially involved in signal transduction and mitogenesis and is regulated by both kinases and phosphatases. Recently, a number of soluble and transmembrane receptor-linked protein tyrosine phosphatases (PTPase) have been characterized. Among these is a 48.4-kDa PTPase encoded by a cDNA isolated from a T-lymphocyte library by low-stringency screening with probes derived from placental PTPase 1B. A human T-cell PTPase (PTPT) cDNA and somatic cell hybrids were used to assign a PTPT gene to conserved syntentic groups on human chromosome 18 and on mouse chromosome 18. Two unlinked sequences, one on human chromosome 1, were also detected.  相似文献   

10.
A putative protein tyrosine phosphatase (PTPase) gene, PTP2, was cloned from Saccharomyces cerevisiae. The complete yeast PTP2 gene encodes a 750-amino acid residue protein with a predicted mass of 86 kDa. The conserved PTPase domain was localized in the C-terminal half of the protein. Amino acid sequence alignment of the yeast PTPase domain with other phosphatases indicated approximately 20-25% sequence identity with the mammalian PTPase and a similar degree of identity with the PTPase encoded by the yeast PTP1 gene. The PTP2 gene is closely linked to the yeast RET1 and STE4 genes and is localized on the right arm of chromosome 15. Gene disruption experiments demonstrated that neither PTP2 alone nor PTP2 in combination with PTP1 was essential for growth under the conditions tested. The ability of PTP2 to complement the cdc25-22 mutant of Schizosaccharomyces pombe was also examined, and unlike the human T-cell PTPase, which was able to complement the cdc25-22 mutant, the S. cerevisiae PTP2 was unable to complement the cdc25-22 mutant of S. pombe.  相似文献   

11.
Unrestricted protein tyrosine phosphatase (PTPase) activity may play a role in pathogenesis. For instance, the virulence determinant gene, yopH, of Yersinia pseudotuberculosis encodes a PTPase. The phosphatase activity of the YopH protein is essential for the pathogenesis of Y. pseudotuberculosis. Yersinia pestis, the bacterium which causes the bubonic plague, also contains a gene closely related to yopH. The action of YopH on host proteins appears to break down signal transduction mechanisms in many cell types including those of the immune system. This may contribute to the ability of the bacterium to escape effective surveillance by the immune system. The vaccinia virus VH1 gene, like yopH in the Yersinia bacteria, encodes a protein phosphatase. The VH1 PTPase defines a new class of phosphatases capable of dephosphorylating both phosphoserine/threonine and tyrosine containing substrates. Proteins sharing sequence identity to this dual-specificity phosphatase have been identified from other viruses, yeast and man. Although a complete understanding of the function of these dual-specificity phosphatases is not presently available, they clearly play important roles in cell cycle regulation, growth control and mitogenic signaling mechanisms. The unique catalytic properties of the dual specificity phosphatases suggest that these catalysts constitute a distinct subfamily of phosphatases.  相似文献   

12.
Li B  Zhao Y  Liang L  Ren H  Xing Y  Chen L  Sun M  Wang Y  Han Y  Jia H  Huang C  Wu Z  Jia W 《Plant physiology》2012,159(2):671-681
Protein tyrosine phosphatases (PTPases) have long been thought to be activated by reductants and deactivated by oxidants, owing to the presence of a crucial sulfhydryl group in their catalytic centers. In this article, we report the purification and characterization of Reductant-Inhibited PTPase1 (ZmRIP1) from maize (Zea mays) coleoptiles, and show that this PTPase has a unique mode of redox regulation and signaling. Surprisingly, ZmRIP1 was found to be deactivated by a reductant. A cysteine (Cys) residue (Cys-181) near the active center was found to regulate this unique mode of redox regulation, as mutation of Cys-181 to arginine-181 allowed ZmRIP1 to be activated by a reductant. In response to oxidant treatment, ZmRIP1 was translocated from the chloroplast to the nucleus. Expression of ZmRIP1 in Arabidopsis (Arabidopsis thaliana) plants and maize protoplasts altered the expression of genes encoding enzymes involved in antioxidant catabolism, such as At1g02950, which encodes a glutathione transferase. Thus, the novel PTPase identified in this study is predicted to function in redox signaling in maize.  相似文献   

13.
In the past few years, very rapid advances have been made in determining the primary structure of protein tyrosine phosphatases (PTPases). PTPase genes have now been isolated from bacteria, viruses, yeasts and insects as well as vertebrates. The cytosolic PTPases have a catalytic domain associated with various accessory domains that are believed to be involved in protein-protein interaction or subcellular localization. The transmembrane PTPases have either one or two cytoplasmic PTPase domains and an extracellular receptor-like structure. The existence of a large number of structurally diverse PTPases suggests that they play specific and crucial roles in signal transduction. In this article, the structural features of the PTPases from higher eukaryotes are reviewed.  相似文献   

14.
15.
J B Millar  P Russell  J E Dixon    K L Guan 《The EMBO journal》1992,11(13):4943-4952
We have identified a third protein tyrosine phosphatase (PTPase) gene in fission yeast, pyp2, encoding an 85 kDa protein. Disruption of pyp2 has no impact on cell viability, but pyp2 is essential in strains lacking the 60 kDa pyp1 PTPase. The two pyp PTPases are approximately 42% identical in their C-terminal catalytic domains and share weak homology in their N-terminal regions. Both genes play a role in inhibiting the onset of mitosis. Disruption of either gene rescues the G2 arrest caused by mutation of the cdc25 mitotic inducer, though the effect of pyp1-disruption is more pronounced. Disruption of pyp1 advances mitosis, suppresses overexpression of the tyrosine kinase encoded by the wee1 mitotic inhibitor, and causes lethal mitotic catastrophe in cdc25 overproducer cells. Cells bearing inactive wee1 are unresponsive to disruption of pyp1. Overexpression of pyp1 or pyp2 delays the onset of mitosis by a wee1-dependent mechanism. These data reveal an unexpected second role for protein tyrosine phosphorylation in the mitotic control that acts by promoting the inhibitory wee1 pathway.  相似文献   

16.
Müller CI  Blumbach B  Krasko A  Schröder HC 《Gene》2001,262(1-2):221-230
Reversible tyrosine phosphorylation of proteins is one of the major regulatory physiological events in response to cell-cell- and cell-matrix contact in Metazoa. Previously it was documented that the tyrosine phosphorylating enzymes, the tyrosine kinases (TKs), are autapomorphic characters of Metazoa, including sponges. In this paper the tyrosine dephosphorylating enzymes, the protein-tyrosine phosphatases (PTPs), are studied which can be grouped into two subfamilies, the soluble PTPs and the receptor PTPs (RPTPs). PTPs are characterized by one PTPase domain which interestingly comprises sequence similarity to yeast PTPs. In contrast to the PTPs, the RPTPs - which have been found only in Metazoa - are provided with two PTPase domains. To study the evolution of the RPTPs the full-length size RPTP was cloned from the marine demosponge Geodia cydonium, the phylogenetic oldest metazoan taxon. The 3253 bp long sequence has a putative open reading frame coding for a 999 aa long RPTP which is characterized by two fibronectin (type III; FN-III) domains in the extracellular portion, one intracellular immunoglobulin (Ig)-related domain, and two PTPase domains. Phylogenetic analysis revealed that the sponge FN-III domains form the basis of the metazoan FN-III domain with the common metazoan ancestor. The Ig-related, typical metazoan, module is classified to the disulphide lacking Ig members and represents the phylogenetic earliest member of this group. The beta-sheet propensity was calculated and the characteristic amino acids are present in the seven beta-sheets. The analysis of the two PTPase domains of the sponge RPTP demonstrates that the first domain is closely related to the PTPase domains present in the soluble PTPs, while the second PTPase domain is only distantly related to them. By constructing a rooted phylogenetic cladogram it became overt that the duplication of the PTPase domains must have occurred already in yeast. This interesting finding indicates that two conserved PTPase domains originated from a common ancestor in yeast while the evolutionary novelties, the FN-III domains and the Ig-related module, were added during the transition to the Metazoa. Hence, the tyrosine dephosphorylating enzyme, RPTP, is an example for a modular protein which is composed of ancient modules (PTPase domain[s]) and two metazoan novelties, while the tyrosine phosphorylating enzymes, the TKs, evolved only in Metazoa.  相似文献   

17.
Lu W  Shen K  Cole PA 《Biochemistry》2003,42(18):5461-5468
The regulation of the protein tyrosine phosphatase (PTPase) SHP-2 by tyrosine phosphorylation has been difficult to elucidate because of the intrinsic instability of the phosphoprotein. In the past, expressed protein ligation has been used to site-specifically incorporate the phosphotyrosine mimic Pmp (phosphonomethylene phenylalanine) into the two tyrosine phosphorylation sites (542, 580) of SHP-2 one at a time to analyze the effects on catalytic behavior. In this study, we have incorporated two Pmps into the phosphorylation sites simultaneously and examined the effects of double SHP-2 tyrosine phosphorylation. We have found that the Pmp groups show close to additive effects on PTPase stimulation, suggesting dual SH2 domain occupancy. The relative effects of the phosphotyrosine analogue difluoromethylene phosphonophenylalanine (F(2)Pmp) compared to those of Pmp were also examined. It was found that the F(2)Pmp analogue showed slightly enhanced PTPase stimulation compared with the Pmp analogue, consistent with its higher affinity for SH2 domains. Taken together with the bis-Pmp studies, these data suggest that double phosphorylation of the SHP-2 C-terminus could give rise to a 9-fold overall PTPase activation, 30-50% of the value associated with deletion of the SH2 domains. Catalytically inactive forms of phosphorylated SHP-2 proteins were also produced by expressed protein ligation. This allowed for a systematic analysis of intermolecular autodephosphorylation of SHP-2, which revealed how conformational plasticity can modulate phosphotyrosine stability.  相似文献   

18.
Most receptor-like, transmembrane protein tyrosine phosphatases (PTPases), such as CD45 and the leukocyte common antigen-related (LAR) molecule, have two tandemly repeated PTPase domains in the cytoplasmic segment. The role of each PTPase domain in mediating PTPase activity remains unclear; however, it has been proposed that PTPase activity is associated with only the first of the two domains, PTPase domain 1, and the membrane-distal PTPase domain 2, which has no catalytic activity, would regulate substrate specificity. In this paper, we examine the function of each PTPase domain of LAR in vivo using a potential physiological substrate, namely insulin receptor, and LAR mutant proteins in which the conserved cysteine residue was changed to a serine residue in the active site of either or both PTPase domains. LAR associated with and preferentially dephosphorylated the insulin receptor that was tyrosine phosphorylated by insulin stimulation. Its association was mediated by PTPase domain 2, because the mutation of Cys-1813 to Ser in domain 2 resulted in weakening of the association. The Cys-1522 to Ser mutant protein, which is defective in the LAR PTPase domain 1 catalytic site, was tightly associated with tyrosine-phosphorylated insulin receptor, but failed to dephosphorylate it, indicating that LAR PTPase domain 1 is critical for dephosphorylation of tyrosine-phosphorylated insulin receptor. This hypothesis was further confirmed by using LAR mutants in which either PTPase domain 1 or domain 2 was deleted. Moreover, the association of the extracellular domains of both LAR and insulin receptor was supported by using the LAR mutant protein without the two PTPase domains. LAR was phosphorylated by insulin receptor tyrosine kinase and autodephosphorylated by the catalytic activity of the PTPase domain 1. These results indicate that each domain of LAR plays distinct functional roles through phosphorylation and dephosphorylation in vivo.  相似文献   

19.
Aurintricarboxylic acid (ATA) prevents apoptosis in a diverse range of cell types including PC12 cells. It is known to stimulate tyrosine phosphorylation of signaling proteins including Shc proteins, phosphatidylinositol 3-kinase, phospholipase C-g and mitogen-activated protein kinases (MAPKs). However, it has been unclear how ATA increases the phosphorylation of these proteins as it was believed to be membrane impermeable. We found that ATA translocates across the plasma membrane of PC12 cells and have confirmed that it is a potent inhibitor of protein tyrosine phosphatases (PTP ases). Other PTPase inhibitors also prevented apoptosis independent of ATA. These observations indicate that ATA exerts its anti-apoptotic effect on PC12 cells at least in part by inhibiting certain PTPase(s).  相似文献   

20.
Protein tyrosine phosphatases have been implicated in the regulation of receptor tyrosine kinase signalling pathways, including that of the insulin receptor. Here, cell density-dependent changes in PTPase expression have been exploited to investigate the relationship between cellular PTPase levels and the insulin receptor signal transduction pathway. Increasing cell density (20%, 50%, and >90%) in the rat McA-RH7777 hepatoma cell line resulted in increased protein expression of the receptor-like PTPase LAR (14-fold), and the nonreceptor PTPases PTP1B (11-fold) and SHP2 (10-fold). Each of these PTPases has previously been implicated in regulating insulin receptor signal transduction. Despite these marked increases, maximum insulin receptor autophosphorylation as well as receptor expression actually increased 2-fold. MAP kinase also increased approximately 2-fold as a function of cell density and paralleled increases in expression levels. Neither sensitivity nor maximum responsiveness to insulin were decreased at increasing cell densities as assessed by activation of PI 3-kinase. Duration of response was also unimpaired. These results suggest that expression levels of relevant PTPases are not the primary determinant in their modulation of insulin receptor kinase activity. Restricted accessibility at the molecular level or involvement of accessory proteins may be more critical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号