首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regeneration of the skin and its appendages is thought to occur by the regulated activation of a dedicated stem cell population. A population of cells in the bulge region of the hair follicle has been identified as the putative stem cell of both the follicle and the interfollicular epidermis. While this assertion is supported by a variety of surrogate assays, there has been no direct confirmation of the normal contribution of these cells to the regeneration of structures other than the cycling portion of the hair follicle. Here, we report lineage analysis revealing that the follicular epithelium is derived from cells in the epidermal placode that express Sonic hedgehog. This analysis also demonstrates that the stem cells resident in the follicular bulge that regenerate the follicle are neither the stem cells of the epidermis nor the source of the stem cells of the epidermis in the absence of trauma.  相似文献   

2.
Ovalbumin-like serine protease inhibitors are mainly localized intracellularly and their in vivo functions are largely unknown. To elucidate their physiological role(s), we studied the expression of one of these inhibitors, protease inhibitor 8 (PI-8), in normal human tissues by immunohistochemistry using a PI-8-specific monoclonal antibody. PI-8 was strongly expressed in the nuclei of squamous epithelium of mouth, pharynx, esophagus, and epidermis, and by the epithelial layer of skin appendages, particularly by more differentiated epithelial cells. PI-8 was also expressed by monocytes and by neuroendocrine cells in the pituitary gland, pancreas, and digestive tract. Monocytes showed nuclear and cytoplasmic localization of PI-8, whereas neuroendocrine cells showed only cytoplasmic staining. In vitro nuclear localization of PI-8 was confirmed by confocal analysis using serpin-transfected HeLa cells. Furthermore, mutation of the P(1) residue did not affect the subcellular distribution pattern of PI-8, indicating that its nuclear localization is independent of the interaction with its target protease. We conclude that PI-8 has a unique distribution pattern in human tissues compared to the distribution patterns of other intracellular serpins. Additional studies must be performed to elucidate its physiological role.  相似文献   

3.
The skin epidermis is a stratified epithelium that forms a barrier that protects animals from dehydration, mechanical stress, and infections. The epidermis encompasses different appendages, such as the hair follicle (HF), the sebaceous gland (SG), the sweat gland, and the touch dome, that are essential for thermoregulation, sensing the environment, and influencing social behavior. The epidermis undergoes a constant turnover and distinct stem cells (SCs) are responsible for the homeostasis of the different epidermal compartments. Deregulation of the signaling pathways controlling the balance between renewal and differentiation often leads to cancer formation.  相似文献   

4.
Langerhans' cells (LCs) have been studied extensively in the epidermis, where they function as antigen-presenting cells. LCs are also present in the stratified epithelia of the murine vagina and cervix, but their function at these sites is not known. Recent reports noted the association of LCs with vaginal epithelial cells undergoing apoptosis and suggested that LCs might be involved in phagocytosis of dead cells. The present study describes the ultrastructural details of this process. The results demonstrate that LCs in murine vaginal epithelium during late metestrus and early diestrus phagocytose apoptotic epithelial cells and may thereby contribute to the normal turnover of the vaginal epithelium during the estrous cycle.  相似文献   

5.
The epidermis is a stratified epithelium consisting of inter follicular regions and appendages (hair follicles, sweat glands, sebaceous glands). The dominant cell type (the keratinocyte) is arranged in groups of cells termed epidermal proliferative units (EPUs), and one centrally-located clonogenic stem cell is ultimately responsible for replacing the remainder of the cells in the unit. Evidence is reviewed which indicates that the epidermal Langerhan's cell (ELC), and the cells comprising the dermis, may modify the keratinocyte microenvironment to create stem cell ‘niches’ and cellular diversity within the basal layer.  相似文献   

6.
The ability of the germinative cell population of scutate scale epidermis to continue to generate cells that undergo their appendage-specific differentiation (beta stratum formation), when associated with foreign dermis, was examined. Tissue recombination experiments were carried out which placed anterior metatarsal epidermis (scutate scale forming region) from normal 15-day chick embryos with either the anterior metatarsal dermis from 15-day scaleless (sc/sc) embryos or the dermis from the metatarsal footpad (reticulate scale forming region) of 15-day normal embryos. Neither of these dermal tissues are able to induce beta stratum formation in the simple ectodermal epithelium of the chorion, however, the footpad dermis develops an appendage-specific pattern during morphogenesis of the reticulate scales, while the sc/sc dermis does not. Morphological and immunohistological criteria were used to assess appendage-specific epidermal differentiation in these recombinants. The results show that the germinative cell population of the 15-day scutate scale epidermis is committed to generating suprabasal cells that follow their appendage-specific pathways of histogenesis and terminal differentiation. Of significance is the observation that the expression of this determined state occurred only when the epidermis differentiated in association with the footpad dermis, not when it was associated with the sc/sc dermis. The consistent positioning of the newly generated beta strata to the apical regions of individual reticulate-like appendages demonstrates that the dermal cues necessary for terminal epidermal differentiation are present in a reticulate scale pattern. The observation that beta stratum formation is completely missing in the determined scutate scale epidermis when associated with the sc/sc dermis adds to our understanding of the sc/sc defect. The present data support the conclusion of earlier studies that the anterior metatarsal dermis from 15-day sc/sc embryos lacks the ability to induce beta stratum formation in a foreign epithelium. In addition, these observations evoke the hypothesis that the sc/sc dermis either lacks the cues (generated during scutate and reticulate scale morphogenesis) necessary for terminal differentiation of the determined scutate scale epidermis or inhibits the generation of a beta stratum.  相似文献   

7.
The superficial layers of the stratified squamous epithelium of the murine vagina undergo transdifferentiation into cuboidal mucinous cells during the proestrus phase of the normal estrous cycle. In contrast to their squamous progenitor cells which have the cytoskeletal characteristics of squamous epithelium, mucinous cells express keratin polypeptides typical of simple nonstratified epithelia. Accordingly, the transdifferentiation of squamous cell into mucinous cells involves not only a change in cell morphology but also a switch in the expression of keratin polypeptides. These data indicate that the stratified squamous cells of the vagina are not terminally differentiated and their phenotype can be hormonally modulated.  相似文献   

8.
Continuous renewal of the epidermis and its appendages throughout life depends on the proliferation of a distinct population of cells called stem cells. We have used in situ retrovirus-mediated gene transfer to genetically mark cutaneous epithelial stem cells of adolescent mice, and have followed the fate of the marked progeny after at least 37 epidermal turnovers and five cycles of depilation-induced hair growth. Histological examination of serial sections of labeled pilosebaceous units demonstrated a complex cell lineage. In most instances, labeled cells were confined to one or more follicular compartments or solely to sebaceous glands. Labeled keratinocytes in interfollicular epidermis were confined to distinct columnar units representing epidermal proliferative units. The contribution of hair follicles to the epidermis was limited to a small rim of epidermis at the margin of the follicle, indicating that long term maintenance of interfollicular epidermis was independent of follicle-derived cells. Our results indicate the presence of multiple stem cells in cutaneous epithelium, some with restricted lineages in the absence of major injury.  相似文献   

9.
Hair follicles and sweat glands are recognized as reservoirs of melanocyte stem cells (MSCs). Unlike differentiated melanocytes, undifferentiated MSCs do not produce melanin. They serve as a source of differentiated melanocytes for the hair follicle and contribute to the interfollicular epidermis upon wounding, exposure to ultraviolet irradiation or in remission from vitiligo, where repigmentation often spreads outwards from the hair follicles. It is unknown whether these observations reflect the normal homoeostatic mechanism of melanocyte renewal or whether unperturbed interfollicular epidermis can maintain a melanocyte population that is independent of the skin's appendages. Here, we show that mouse tail skin lacking appendages does maintain a stable melanocyte number, including a low frequency of amelanotic melanocytes, into adult life. Furthermore, we show that actively cycling differentiated melanocytes are present in postnatal skin, indicating that amelanotic melanocytes are not uniquely relied on for melanocyte homoeostasis.  相似文献   

10.
The epidermis of terrestrial vertebrates is a stratified epithelium and forms an essential protective barrier. It is continually renewed, with dead corneocytes shed from the surface and replaced from a basal keratinocyte stem cell population. Whilst mouse is the prime model system used for epidermal studies, there is increasing employment of the zebrafish to analyse epidermis development and homeostasis, however the architecture and ontogeny of the epidermis in this system are incompletely described. In particular, it is unclear if adult zebrafish epidermis is derived entirely from the basal epidermal stem cell layer, as in the mouse, or if the most superficial keratinocyte layer is a remnant of the embryonic periderm. Furthermore, a relative paucity of cellular markers and genetic reagents to label and manipulate the basal epidermal stem cell compartment has hampered research. Here we show that the type I keratin, krtt1c19e, is a suitable marker of the basal epidermal layer and identify a krtt1c19e promoter fragment able to drive strong and specific expression in this cell type. Use of this promoter to express an inducible Cre recombinase allowed permanent labelling of basal cells during embryogenesis, and demonstrated that these cells do indeed generate keratinocytes of all strata in the adult epidermis. Further deployment of the Cre-Lox system highlighted the transient nature of the embryonic periderm. We thus show that the epidermis of adult zebrafish, as in the mouse, derives from basal stem cells, further expanding the similarities of epidermal ontogeny across vertebrates. Future use of this promoter will assist genetic analysis of basal keratinocyte biology in zebrafish.  相似文献   

11.
By means of the immunofluorescent method using rabbit serum that contains natural antibodies against the basal cell antigen of epidermis, the distribution of the antigen has been demonstrated in cells of the basal layer of all types of the stratified epithelium. The reaction is also noted in cytoplasm of the epithelial cells in the thymus and the tracheal mucous membrane. This demonstrates their histogenic affinity to stratified epithelii. The antigen studied is not species-specific, since it is revealed in the stratified epithelium of all species examined (human being, mouse, rat, guinea pig, rabbit). It is possible to use the basal cell antigen as a marker for immunomorphological reveal of epithelial cells in the thymus in the process of its physiological and pathological involution.  相似文献   

12.
The Dkk family of secreted cysteine-rich proteins regulates Wnt/beta-catenin signaling by interacting with the Wnt co-receptor Lrp5/6. Here, we show that Dkk2-mediated repression of the Wnt/beta-catenin pathway is essential to promote differentiation of the corneal epithelial progenitor cells into a non-keratinizing stratified epithelium. Complete transformation of the corneal epithelium into a stratified epithelium that expresses epidermal-specific differentiation markers and develops appendages such as hair follicles is achieved in the absence of the Dkk2 gene function. We show that Dkk2 is a key regulator of the corneal versus epidermal fate of the ocular surface epithelium.  相似文献   

13.
Using suppressive subtractive hybridization, we have identified a novel gene, which we named early epithelial differentiation associated (EEDA), which is uniquely associated with an early stage of stratified epithelial differentiation. In epidermis, esophageal epithelium, and tongue epithelium, EEDA mRNA, and antigen was abundant in suprabasal cells, but was barely detectable in more differentiated cells. Consistent with the limbal location of corneal epithelial stem cells, EEDA was expressed in basal corneal epithelial cells that are out of the stem cell compartment, as well as the suprabasal corneal epithelial cells. The strongest EEDA expression occurred in suprabasal precortical cells of mouse, bovine, and human anagen follicles. Developmental studies showed that the appearance of EEDA in embryonic mouse epidermis (E 15.5) coincided with morphological keratinization. Interestingly, EEDA expression is turned off when epithelia were perturbed by wounding and by cultivation under both low and high Ca2+ conditions. Our results indicate that EEDA is involved in the early stages of normal epithelial differentiation, and that EEDA is important for the "normal" differentiation pathway in a wide range of stratified epithelia.  相似文献   

14.
Recent work has shown remarkable plasticity between neural and hematopoeitic, as well as between hematopoeitic and muscle stem cells, depending on environmental stimuli (Fuchs, E. and Segre, J. A. (2000) Cell 100, 143-155). Stem cells give rise to a proliferative transient amplifying population (TA), which is generally considered to be irreversibly committed. Corneal epithelium provides a particularly useful system for studying the ability of TA cells to activate different genetic programs in response to a change in their fibroblast environment. Indeed, corneal stem and TA cells occupy different localities - stem cells at the periphery, and TA cells more central (Lehrer, M. S., Sun, T. T. and Lavker, R. M. (1998) J. Cell Sci. 111, 2867-2875) - and thus can be discretely dissected from each other. It is well known that pluristratified epithelia of cornea and skin display distinct programs of differentiation: corneal keratinocytes express keratin pair K3/K12 and epidermal keratinocytes keratin pair K1-2/K10; moreover, the epidermis forms cutaneous appendages, which express their own set of keratins. In our experiments, central adult rabbit corneal epithelium was thus associated either with a mouse embryonic dorsal, upper-lip or plantar dermis before grafting onto nude mice. Complementary experiments were performed using adult mouse corneal epithelium from the Rosa 26 strain. The origin of the differentiated structures were identified in the first case by Hoechst staining and in the second by the detection of beta-galactosidase activity. The results show that adult central corneal cells are able to respond to specific information originating from embryonic dermis. They give rise first to a new basal stratum, which does not express anymore corneal-type keratins, then to pilosebaceous units, or sweat glands, depending of the dermis, and finally to upper layers expressing epidermal-type keratins. Our results provide the first evidence that a distinct TA cell population can be reprogrammed.  相似文献   

15.
The most widely accepted mechanism of male urethral development proposes that the urethral plate is elevated by urethral folds which fuse ventrally in a proximal-to-distal sequence. Unlike its proximal counterpart, the urethra which forms within the glans is lined by a stratified squamous epithelium and has a more controversial development. One theory supports the idea that fusion of the urethral folds extends all the way to the tip of the glans. Another theory suggests that a solid ectodermal in-growth of epidermis canalizes the glandar urethra. We hypothesized that the use of immunohistochemical staining and tissue recombinant grafting would delineate the epithelia involved and lend clues to their origin. Thirty-six human fetal phallic specimens of gestational ages 5-22 weeks were sectioned and stained immunohistochemically with antibodies raised against different cytokeratins. Evaluation of the sections showed that the urethral plate, an extension of the urogenital sinus, extended to the tip of the phallus and maintained patency and continuity throughout the process of urethral development. The entire urethra, including the glans portion, was formed by dorsal extension and disintegration of the urethral plate combined with ventral growth and fusion of the urethral folds. Sections of the distal glandar urethra showed no evidence of a solid ectodermal ingrowth. Rather, immunostaining results at different ages suggested differentiation of the endodermal urethral plate into a stratified squamous epithelium. To determine whether urothelium could be induced to express a stratified squamous phenotype, mouse fetal bladder epithelium was combined with rat fetal genital tubercle mesenchyme and grown under the renal capsule of athymic mice. The bladder epithelium differentiated into a stratified squamous epithelium. Thus, proper mesenchymal signaling may induce differentiation of urothelium into a stratified squamous phenotype, such as during development of the urethra of the glans penis.  相似文献   

16.
Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination.  相似文献   

17.
18.
The skin epidermis and its appendages provide a protective barrier that is impermeable to harmful microbes and also prevents dehydration. To perform their functions while being confronted with the physicochemical traumas of the environment, these tissues undergo continual rejuvenation through homeostasis, and, in addition, they must be primed to undergo wound repair in response to injury. The skin's elixir for maintaining tissue homeostasis, regenerating hair, and repairing the epidermis after injury is its stem cells, which reside in the adult hair follicle, sebaceous gland, and epidermis. Stem cells have the remarkable capacity to both self-perpetuate and also give rise to the differentiating cells that constitute one or more tissues. In recent years, scientists have begun to uncover the properties of skin stem cells and unravel the mysteries underlying their remarkable capacity to perform these feats. In this paper, I outline the basic lineages of the skin epithelia and review some of the major findings about mammalian skin epithelial stem cells that have emerged in the past five years.  相似文献   

19.
During wound healing, interfollicular epidermis can be regenerated from the outer root sheath of hair follicles, showing that the cells of this structure can shift toward an interfollicular epidermal phenotype. Similarly, it has been shown that a multilayered epithelium originating from outer sheath cells can be obtained in vitro by culturing hair follicles. However, in the culture systems developed so far, the phenotypical shift was incomplete since the cells retained some of their original characteristics and did not acquire several key markers of terminally differentiated epidermis. In this paper, we describe a new tissue culture method for obtaining a multilayered epithelium from outer sheath cells. This is performed by implanting human hair follicles vertically into dermal equivalents and then raising the culture at the air-liquid interface. The morphological, immunological, and biochemical features of the in vitro reconstructed tissue are very similar to those observed in normal interfollicular epidermis, including those specific for terminally differentiated keratinocytes. Thus, under appropriate in vitro conditions, outer root sheath cells are able to express an interfollicular epidermal phenotype as occurs in vivo during wound healing.  相似文献   

20.
The transmembrane protein Crumbs (Crb) and its intracellular adaptor protein Pals1 (Stardust, Sdt in Drosophila) play a crucial role in the establishment and maintenance of apical-basal polarity in epithelial cells in various organisms. In contrast, the multiple PDZ domain-containing protein Pals1-associated tight junction protein (PATJ), which has been described to form a complex with Crb/Sdt, is not essential for apical basal polarity or for the stability of the Crb/Sdt complex in the Drosophila epidermis. Here we show that, in the embryonic epidermis, Sdt is essential for the correct subcellular localization of PATJ in differentiated epithelial cells but not during cellularization. Consistently, the L27 domain of PATJ is crucial for the correct localization and function of the protein. Our data further indicate that the four PDZ domains of PATJ function, to a large extent, in redundancy, regulating the function of the protein. Interestingly, the PATJ-Sdt heterodimer is not only recruited to the apical cell-cell contacts by binding to Crb but depends on functional Bazooka (Baz). However, biochemical experiments show that PATJ associates with both complexes, the Baz-Sdt and the Crb-Sdt complex, in the mature epithelium of the embryonic epidermis, suggesting a role of these two complexes for the function of PATJ during the development of Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号