首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primordial germ cell development uses programmed cell death to remove abnormal, misplaced or excess cells. Precise control of this process is essential to maintain the continuity and integrity of the germline, and to prevent germ cells from colonizing locations other than the gonads. Through careful analyses of primordial germ cell distribution in developing Drosophila melanogaster embryos, we show that normal germ cell development involves extensive programmed cell death during stages 10-12 of embryogenesis. This germ cell death is mediated by Drosophila p53 (p53). Mutations in p53 result in excess primordial germ cells that are ectopic to the gonads. Initial movements of the germ cells appear normal, and wild-type numbers of germ cells populate the gonads, indicating that p53 is required for germ cell death, but not migration. To our knowledge, this is the first report of a loss-of-function phenotype for Drosophila p53 in a non-sensitized background. The p53 phenotype is remarkably similar to that of outsiders (out) mutants. Here, we show that the out gene encodes a putative monocarboxylate transporter. Mutations in p53 and out show nonallelic noncomplementation. Interestingly, overexpression of p53 in primordial germ cells of out mutant embryos partially suppresses the out germ cell death phenotype, suggesting that p53 functions in germ cells either downstream of out or in a closely linked pathway. These findings inform models in which signaling between p53 and cellular metabolism are integrated to regulate programmed cell death decisions.  相似文献   

2.
In some species such as flies, worms, frogs and fish, the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that, although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell-specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells.  相似文献   

3.
Fibroblast growth factor (FGF) signaling is thought to play a role in germ cell behavior. FGF2 has been reported to be a mitogen for primordial germ cells in vitro, whilst combinations of FGF2, steel factor and LIF cause cultured germ cells to transform into permanent lines of pluripotent cells resembling ES cells. However, the actual function of FGF signaling on the migrating germ cells in vivo is unknown. We show, by RT-PCR analysis of cDNA from purified E10.5 germ cells, that germ cells express two FGF receptors: Fgfr1-IIIc and Fgfr2-IIIb. Second, we show that FGF-mediated activation of the MAP kinase pathway occurs in germ cells during their migration, and thus they are potentially direct targets of FGF signaling. Third, we use cultured embryo slices in simple gain-of-function experiments, using FGF ligands, to show that FGF2, a ligand for FGFR1-IIIc, affects motility, whereas FGF7, a ligand for FGFR2-IIIb, affects germ cell numbers. Loss of function, using a specific inhibitor of FGF signaling, causes increased apoptosis and inhibition of cell shape change in the migrating germ cells. Lastly, we confirm in vivo the effects seen in slice cultures in vitro, by examining germ cell positions and numbers in embryos carrying a loss-of-function allele of FGFR2-IIIb. In FGFR2-IIIb(-/-) embryos, germ cell migration is unaffected, but the numbers of germ cells are significantly reduced. These data show that a major role of FGF signaling through FGFR2-IIIb is to control germ cell numbers. The data do not discriminate between direct and indirect effects of FGF signaling on germ cells, and both may be involved.  相似文献   

4.
Recent years have witnessed a number of new findings with significant implications for our understanding of the development of germ cell tumors. This communication reviews some of these recent insights with an emphasis on mechanisms that may convert a germ cell into a tumor cell. Three aspects are discussed in this review: (1) the early origin of germ cell tumors from primordial germ cells through an aberrant mitosis-to-meiosis switch; (2) errors during meiosis, which promote tumorigenic transformation of germ cells; and (3) the role of small RNAs such as oncomirs (miRNAs) and oncopirs (piRNAs) in germ cell tumor formation. Since much has been learned using a variety of organismal models, data obtained in experiments with mice, nematodes, fruit flies, and human data will be considered. Only exemplary references are included.  相似文献   

5.
J Austin  J Kimble 《Cell》1987,51(4):589-599
In the wild-type C. elegans germ line there are both mitotic and meiotic germ cells. Mutations in glp-1 cause germ cells that would normally divide mitotically to enter meiosis. This mutant phenotype mimics the effect of killing the distal tip cell, a somatic cell that interacts with the germ line to regulate the mitotic/meiotic decision. In addition, wild-type glp-1 product is required maternally for embryogenesis. Temperature-shift experiments indicate that the temporal requirement for glp-1 activity in the germ line is the same as that for distal tip cell regulation. Mosaic analyses suggest that glp-1 is produced in the germ line. We propose that glp-1 acts as part of the receiving mechanism in the interaction between the distal tip cell and germ line.  相似文献   

6.
In the mouse, germ cells that do not reach the genital ridges rapidly die by a wave of apoptosis that requires the pro-apoptotic protein Bax. In Bax-null embryos, large numbers of ectopic (extragonadal) germ cells fail to die. We have studied the fates of these, in an effort to understand the etiology of human extragonadal germ cell tumors, which are thought to arise from ectopic germ cells. We find that ectopic germ cells in which apoptosis is blocked form a heterogeneous population, which partially differentiates along the gonocyte pathway to different extents in different regions of the embryo, and in the two genders. In particular, a previously undescribed population of ectopic germ cells was identified in the tail. These germ cells retained primitive markers for longer than ectopic germ cells in other regions, and represent a possible origin for sacrococcygeal type I extragonadal germ cell tumors found in neonates and infants. This hypothesis is supported, but not proved, by the finding of cells expressing the germ cell marker Oct4 associated with a coccygeal germ cell tumor in a human infant.  相似文献   

7.
In this study we show that mouse primordial germ cells and fetal germ cells at certain stages of differentiation express E-cadherin and alpha and beta catenins. Moreover, we demonstrate that the formation of germ cell aggregates that rapidly occurs when monodispersed germ cell populations are released from embryonic gonads in culture is E-cadherin mediated, developmentally regulated, and dependent on the sex of the germ cells. Immunoblotting analyses indicate that the lower ability to form aggregates of primordial germ cells in comparison to fetal germ cells is not due to gross changes in E-cadherin expression, altered association with beta catenin, or changes in beta catenin phosphorylation. Investigating possible functions of E-cadherin-mediated adhesion in primordial germ cell development, we found that E-cadherin-mediated adhesion may stimulate the motility of primordial germ cells. Moreover, treatment of primordial germ cells cultured on STO cell monolayers with an anti-E-cadherin antibody caused a significant decrease in their number and markedly reduced their ability to form colonies in vitro. The same in vitro treatment of explanted undifferentiated gonadal ridges cultured for 4 days results in decreased numbers and altered localization of the germ cell inside the gonads. Taken together these results suggest that E-cadherin plays an important role in primordial germ cell migration and homing and may act as a modulator of primordial germ cell development.  相似文献   

8.
9.
DNA methylation is necessary for the silencing of endogenous retrotransposons and the maintenance of monoallelic gene expression at imprinted loci and on the X chromosome. Dynamic changes in DNA methylation occur during the initial stages of primordial germ cell development; however, all consequences of this epigenetic reprogramming are not understood. DNA demethylation in postmigratory primordial germ cells coincides with erasure of genomic imprints and reactivation of the inactive X chromosome, as well as ongoing germ cell differentiation events. To investigate a possible role for DNA methylation changes in germ cell differentiation, we have studied several marker genes that initiate expression at this time. Here, we show that the postmigratory germ cell-specific genes Mvh, Dazl and Scp3 are demethylated in germ cells, but not in somatic cells. Premature loss of genomic methylation in Dnmt1 mutant embryos leads to early expression of these genes as well as GCNA1, a widely used germ cell marker. In addition, GCNA1 is ectopically expressed by somatic cells in Dnmt1 mutants. These results provide in vivo evidence that postmigratory germ cell-specific genes are silenced by DNA methylation in both premigratory germ cells and somatic cells. This is the first example of ectopic gene activation in Dnmt1 mutant mice and suggests that dynamic changes in DNA methylation regulate tissue-specific gene expression of a set of primordial germ cell-specific genes.  相似文献   

10.
11.
Germ cell binding to rat Sertoli cells in vitro   总被引:2,自引:0,他引:2  
The interaction between male germ cells and Sertoli cells was studied in vitro by co-incubation experiments using isolated rat germ cells and primary cultures of Sertoli cells made germ cell-free by the differential sensitivity of germ cells to hypotonic shock. The germ cell/Sertoli cell interaction was examined morphologically with phase-contrast and scanning electron microscopy and then quantified by measuring radioactivity bound to Sertoli cell cultures after co-incubation with added [3H]leucine-labeled germ cells. Germ cell binding to Sertoli cell cultures was the result of specific adhesion between these two cell types, and several features of this specific adhesion were observed. First, germ cells adhered to Sertoli cell cultures under conditions during which spleen cells and red blood cells did not. Second, germ cells had a greater affinity for Sertoli cell cultures than they had for cultures of testicular peritubular cells or cerebellar astrocytes. Third, germ cells fixed with paraformaldehyde adhered to live Sertoli cultures while similarly fixed spleen cells adhered less tightly. Neither live nor paraformaldehyde-fixed germ cells adhered to fixed Sertoli cell cultures. Fourth, germ cell binding to Sertoli cell cultures was not immediate but increased steadily and approached a maximum at 4 h of co-incubation. Saturation of germ cell binding to Sertoli cell cultures occurred when more than 4200 germ cells were added per mm2 of Sertoli cell culture surface. Finally, germ cell binding to Sertoli cell cultures was eliminated when co-incubation was performed on ice. Based on these observations, we concluded that germ cell adhesion to Sertoli cells was specific, temperature-dependent, and required a viable Sertoli cell but not necessarily a viable germ cell. These results have important implications for understanding the complex interaction between Sertoli cells and germ cells within the seminiferous tubule and in the design of future experiments probing details of this interaction.  相似文献   

12.
Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But “with great power, comes great responsibility”, meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge.  相似文献   

13.
After their arrival in the fetal gonad, mammalian germ cells express E-cadherin and are found in large clusters, similar to germ cell cysts in Drosophila. In Drosophila, germ cells in cysts are connected by ring canals. Several molecular components of intercellular bridges in mammalian cells have been identified, including TEX14, a protein required for the stabilization of intercellular bridges, and several associated proteins that are components of the cytokinesis complex. This has led to the hypothesis that germ cell clusters in the mammalian gonad arise through incomplete cell divisions. We tested this hypothesis by generating chimeras between GFP-positive and GFP-negative mice. We show that germ cell clusters in the fetal gonad arise through aggregation as well as cell division. Intercellular bridges, however, are likely restricted to cells of the same genotype.  相似文献   

14.
Drosophila germ cells form at the posterior pole of the embryo and migrate to the somatic gonad. Approximately 50% of the germ cells that form reach their target. The errant cells within the embryo undergo developmentally regulated cell death. Prior studies have identified some autosomal genes that regulate germ cell migration, but the genes that control germ cell death are not known. To identify X-linked genes required for germ cell migration and/or death, we performed a screen for mutations that disrupt these processes. Here we report the identification of scattershot and outsiders, two genes that regulate the programmed death of germ cells. The scattershot gene is defined by a mutation that disrupts both germ cell migration and the death of germ cells ectopic to the gonad. Maternal and zygotic expression of scattershot is required, but the migration and cell death functions can be genetically uncoupled. Zygotic expression of wild-type scattershot rescues germ cell pathfinding, but does not restore the programmed death of errant cells. The outsiders gene is required zygotically. In outsiders mutant embryos, the appropriate number of germ cells is incorporated into the gonad, but germ cells ectopic to the gonad persist.  相似文献   

15.
Whereas somatic cell cytokinesis resolves with abscission of the midbody, resulting in independent daughter cells, germ cell cytokinesis concludes with the formation of a stable intercellular bridge interconnecting daughter cells in a syncytium. While many proteins essential for abscission have been discovered, until recently, no proteins essential for mammalian germ cell intercellular bridge formation have been identified. Using TEX14 as a marker for the germ cell intercellular bridge, we show that TEX14 co-localizes with the centralspindlin complex, mitotic kinesin-like protein 1 (MKLP1) and male germ cell Rac GTPase-activating protein (MgcRacGAP) and converts these midbody matrix proteins into stable intercellular bridge components. In contrast, septins (SEPT) 2, 7 and 9 are transitional proteins in the newly forming bridge. In cultured somatic cells, TEX14 can localize to the midbody in the absence of other germ cell-specific factors, suggesting that TEX14 serves to bridge the somatic cytokinesis machinery to other germ cell proteins to form a stable intercellular bridge essential for male reproduction.  相似文献   

16.
Male mammals with two X chromosomes are sterile due to the demise of virtually all germ cells; however, the underlying reasons for the germ cell loss remain unclear. The use of a breeding scheme for the production of XXY male mice has allowed us to experimentally address the question of when and why germ cells die in the XXY testis and whether the defect is due to the presence of an additional X chromosome in the soma, the germ cells themselves, or both. Our studies demonstrate that altered X-chromosome dosage acts to impair germ cell development in the testis at a much earlier stage than suggested by previous studies of XX sex-reversed males or XX/XY chimeras. Specifically, we noted significantly reduced germ cell numbers in the XXY testis during the period of germ cell proliferation in the early stages of testis differentiation. Although the somatic development of the XXY testis is morphologically and temporally normal, our studies indicate that germ cell demise reflects a defect in somatic/germ cell communication, since, in an in vitro system, the proliferative potential of fetal germ cells from XXY males is indistinguishable from that of normal males. Mol. Reprod. Dev. 49:101–111, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
18.
Chemical mutagenesis test results have not revealed evidence of germ line specific mutagens. However, conventional assays have indicated that there are male-female differences in mutagenic response, as well as quantitative/qualitative differences in induced mutations which depend upon the particular cell stage exposed. Many factors inherent in the germ line can be speculated to influence chemical transport to, and interaction with, target cell populations to result in mutagenic outcomes. The level of uncertainty regarding the general operation of such factors, in combination with the limited availability of chemical test data designed to address comparative somatic and germ cell mutagenesis, leaves open the question of whether there are mutagens specifically affecting germ cells. This argues for a conservative approach to interpreting germ cell risk from somatic cell mutation analysis.  相似文献   

19.
The protein phosphatase 1cgamma (PP1cgamma) gene is required for spermatogenesis. Males homozygous for a null mutation are sterile, and display both germ cell and Sertoli cell defects. As these two cell types are physically and functionally intimately connected in the testis, the question arises as to whether the primary site of PP1cgamma action is in Sertoli cells, germ cells, or both. We generated chimeric males by embryo aggregation to test whether wild type Sertoli cells are capable of rescuing mutant germ cells. To distinguish between the desired XY-XY chimeras and uninformative XX-XY chimeras, we designed an adaptation of the single nucleotide primer extension (SNuPE) assay. None of the XY-XY chimeras sired pups derived from mutant germ cells, indicating that the protein is required in germ cells for production of functional sperm. Analysis of a chimeric testis revealed intermediate phenotypes when compared with PP1cgamma-/- testes, suggestive of cell nonautonomous effects. We conclude that PP1cgamma is required in a cell autonomous fashion in germ cells. There may be an additional cell nonautonomous role played by this gene in testes, possibly mediated by defective signaling between germ cells and Sertoli cells.  相似文献   

20.
How germ cells are specified in the embryos of animals has been a mystery for decades. Unlike most developmental processes, which are highly conserved, embryos specify germ cells in very different ways. Curiously, in mouse embryos germ cells are specified by extracellular signals; they are not autonomously specified by maternal germ cell determinants (germ plasm), as are the germ cells in most animal model systems. We have developed the axolotl (Ambystoma mexicanum), a salamander, as an experimental system, because classic experiments have shown that the germ cells in this species are induced by extracellular signals in the absence of germ plasm. Here, we provide evidence that the germ cells in axolotls arise from naive mesoderm in response to simple inducing agents. In addition, by analysing the sequences of axolotl germ-cell-specific genes, we provide evidence that mice and urodele amphibians share a common mechanism of germ cell development that is ancestral to tetrapods. Our results imply that germ plasm, as found in species such as frogs and teleosts, is the result of convergent evolution. We discuss the evolutionary implications of our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号