首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Infection of BALB/c mice with Plasmodium berghei results in an anemia which is excessive to that which can be accounted for solely by direct destruction of infected erythrocytes by the mature schizonts at the time of merozoite release. Mice infected with 104 infected erythrocytes exhibited a progressive anemia beginning on Day 7. Significant reticulocytosis was first observed on Day 9 and parasitemia tended to parallel reticulocytosis with a lag of about 1 day. In studies of erythrophagocytosis, washed erythrocytes from randomly selected mice infected with 105 infected red blood cells were phagocytized by peritoneal macrophages in vitro to a significantly greater extent on Days 3–5 postinfection than were erythrocytes taken from normal controls. The degree of erythrophagocytosis reached a peak on Day 4 and returned to control levels on Days 6 and 7. Erythrocytes taken from infected animals on Day 7 and incubated in normal plasma were phagocytized to a significantly greater extent than were normal erythrocytes incubated in normal plasma or erythrocytes from infected mice incubated in plasma from infected animals. The enhanced in vitro erythrophagocytosis observed on Days 3–5, which preceded and coincided with the beginning of the early-onset anemia on Day 5, may correlate with in vivo phenomena which may contribute to the developing anemia. Furthermore, the restoration of enhanced erythrophagocytosis by normal plasma seems to indicate that some component(s) of normal plasma may be depleted during the early stages of P. berghei infection.  相似文献   

2.
Aluminum belongs to a group of potential toxic elements capable of penetrating the human body. In this paper, the effect of aluminum concentrations on red blood cell membranes using different fluorescent probes able to localize in various parts of the phospholipid bilayer (TMA-DPH, laurdan and pyrene) were studied. Our results confirm that human erythrocytes exposed to aluminum undergo physico-chemical modifications at the membrane level. A decrease in fluorescence anisotropy of TMA-DPH and in the polarity of the lipid bilayer with a concomitant shift toward a gel phase was observed, and the pyrene excimerization coefficient (kex) increased.Furthermore, the presence of aluminum induced lipid peroxidation and reduced the activity of erythrocyte antioxidant enzymes (SOD, CAT and GSHPx). Al-induced morphological changes on the erythrocyte membrane surface were monitored using atomic force microscopy. These results provide further information on the target of action of different aluminum amounts.  相似文献   

3.
Erythrocyte polymorphisms associated with a survival advantage to Plasmodium falciparum infection have undergone positive selection. There is a predominance of blood group O in malaria-endemic regions, and several lines of evidence suggest that ABO blood groups may influence the outcome of P. falciparum infection. Based on the hypothesis that enhanced innate clearance of infected polymorphic erythrocytes is associated with protection from severe malaria, we investigated whether P. falciparum-infected O erythrocytes are more efficiently cleared by macrophages than infected A and B erythrocytes. We show that human macrophages in vitro and mouse monocytes in vivo phagocytose P. falciparum-infected O erythrocytes more avidly than infected A and B erythrocytes and that uptake is associated with increased hemichrome deposition and high molecular weight band 3 aggregates in infected O erythrocytes. Using infected A1, A2, and O erythrocytes, we demonstrate an inverse association of phagocytic capacity with the amount of A antigen on the surface of infected erythrocytes. Finally, we report that enzymatic conversion of B erythrocytes to type as O before infection significantly enhances their uptake by macrophages to observed level comparable to that with infected O wild-type erythrocytes. These data provide the first evidence that ABO blood group antigens influence macrophage clearance of P. falciparum-infected erythrocytes and suggest an additional mechanism by which blood group O may confer resistance to severe malaria.  相似文献   

4.
Aluminum (Al) is a limiting factor of crop yields on acidic soils. Ion aluminum (Al3+) acts primarily in plant root system retarding its growth and development, leading to the reduction of lateral roots number, and consequently the decrease of vegetal production. Most of coffee producing areas are located in acidic soils, which have Al3+ contents enough to damage plant development. Despite the advances in the understanding of physiological and genetic mechanisms of Al tolerance/susceptibility, few are known about Al ion action in coffee plants. This report describes the expression analysis of genes related to aluminum stress in germinating seeds of two cultivars of C. arabica (Catuaí Amarelo IAC 62 and Icatu Vermelho IAC 4045) when challenged with Al3+. In silico analyses of Brazilian Coffee Genome Project (BCGP) database were used to select genes previously found to be related with Al-stress. The expression profile of these genes in Catuaí and Icatu was evaluated through Quantitative PCR (qPCR). Based on our data, we suggest that both analyzed cultivars displays mechanisms of resistance or exclusion, which occurs outside the cell excluding Al3+ assimilation, and mechanisms of tolerance that occurs inside the cell after Al3+ absorption. The major difference is the timing of activation of each mechanism. While Catuaí tends to use resistance mechanisms in early stages of stress, Icatu uses tolerance strategies. In late stages, both cultivars seem to display tolerance mechanisms, but Icatu also displays Al-exclusion strategy.  相似文献   

5.
Aluminum is a commonly occurring trace element for which no nutritional requirements have been set. Some non-conclusive evidence exists suggesting a need of aluminum for growth, reproduction or health of man and animals. There is concern that exposure or consumption of aluminum may be toxic to humans and animals. The objective of the current study was to compare tissue levels of aluminum of rats fed soft drinks packaged in aluminum cans, glass bottles or distilled water. Thirty male weanling rats (Sprague-Dawley) were divided into three treatment groups of 10 rats each. All rats were fed rodent chow ad libitum throughout the study. Three different fluids, i.e. distilled water, diet soft drinks from aluminum cans and diet soft drinks from glass bottles, were fed for a period of 3 weeks. Aluminum contents of tissues were measured by atomic absorption spectrophotometry. Canned soft drink fed rats had significantly higher blood, liver and bone aluminum concentration than rats that were given glass bottled soft drink. There was a 69% higher bone aluminum concentration and 16% lower femur weight in rats fed aluminum canned soft drinks when compared with rats fed with distilled water.  相似文献   

6.
The root apex is considered the first sites of aluminum (Al) toxicity and the reduction in root biomass leads to poor uptake of water and nutrients. Aluminum is considered the most limiting factor for plant productivity in acidic soils. Aluminum is a light metal that makes up 7 % of the earth’s scab dissolving ionic forms. The inhibition of root growth is recognized as the primary effect of Al toxicity. Seeds of wheat cv. Keumkang were germinated on petridish for 5 days and then transferred hydroponic apparatus which was treated without or with 100 and 150 μM AlCl3 for 5 days. The length of roots, shoots and fresh weight of wheat seedlings were decreased under aluminum stress. The concentration of K+, Mg2+ and Ca2+ were decreased, whereas Al3+ and P2O5 ? concentration was increased under aluminum stress. Using confocal microscopy, the fluorescence intensity of aluminum increased with morin staining. A proteome analysis was performed to identify proteins, which are responsible to aluminum stress in wheat roots. Proteins were extracted from roots and separated by 2-DE. A total of 47 protein spots were changed under Al stress. Nineteen proteins were significantly increased such as sadenosylmethionine, oxalate oxidase, malate dehydrogenase, cysteine synthase, ascorbate peroxidase and/or, 28 protein spots were significantly decreased such as heat shock protein 70, O-methytransferase 4, enolase, and amylogenin. Our results highlight the importance and identification of stress and defense responsive proteins with morphological and physiological state under Al stress.  相似文献   

7.
1. The study has been carried out on Wistar rats. The aim of the present study was to trace the effect of aluminum on enzyme activities and hematological parameters on erythrocytes.2. Aluminum decreased activities of acetylcholinesterase, glutathione reductase, glucose-6-phosphate dehydrogenase, and lactate dehydrogenase in the erythrocytes of the animals tested.3. In the peripheral blood, a significant decrease in the erythrocyte count, hemoglobin level and hematocrit index and increased percentage of reticulocytes and polychromatophilic erythrocytes were observed.4. The increase in the neutrophilic granulocyte and lymphocyte count was significant.5. An inhibitory effect of aluminum on the phagocytic activity of granulocytes was also observed.  相似文献   

8.
All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria.  相似文献   

9.
Nitric oxide plays an important role in various biological processes, such as neurotransmission, blood pressure control, immunological responses, and antioxidant action. The control of its local concentration, which is crucial for obtaining the desired effect, can be achieved with exogenous NO-carriers. Coordination compounds, in particular ruthenium(III) and (II) amines, are good NO-captors and -deliverers. The chemical and photochemical properties of several ruthenium amine complexes as NO-carriers in vitro and in vivo have been reviewed. These nitrosyl complexes can stimulate mice hippocampus slices, promote the lowering of blood pressure in several in vitro and in vivo models, and control Trypanosoma cruzi and Leishmania major infections, and they are also effective against tumor cells in different models of cancer. These complexes can be activated chemically or photochemically, and the observed biological effects can be attributed to the presence of NO in the compound. Their efficiencies are explained on the basis of the [RuIINO+]3+/[RuIINO0]2+ reduction potential, the specific rate constant for NO liberation from the [RuNO]2+ moiety, and the quantum yield of NO release.  相似文献   

10.
Chicken erythrocytes parasitized by Plasmodium lophurae were cultured in vitro in the presence of glycine-2-14C, glycine-U-14C, and 14C-Na-formate for 10–16 hr. Purines isolated from the acid-soluble fraction (ASF), RNA and DNA of parasitized blood exposed to 14C-glycine contained specific activities equivalent to those of uninfected erythrocyte purines. However, parasitized blood samples incorporated 14C-Na-formate into ASF, RNA and DNA purines to a much greater extent than uninfected blood; the ratio of incorporated formate vs glycine by infected blood samples indicated the absence of a complete de novo purine pathway, but failed to rule out the existence of a partial de novo purine pathway in the host-parasite complex.Adenine-8-14C and 14C-orotic acid served as purine and pyrimidine nucleotide precursors, respectively, in the P. lophurae-chicken erythrocyte complex; 14C-uracil did not serve as an effective pyrimidine nucleotide precursor under in vitro conditions.Autoradiographic studies failed to demonstrate either the in vivo or in vitro incorporation of 3H-thymidine or 3H-uridine into the nucleic acids of intraerythrocytic stages of P. lophurae.  相似文献   

11.
Aluminum impairs uptake of Mg2+, but the mechanisms of this inhibition are not understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solution by intact, 23-day-old plants of ryegrass (Lolium multiflorum Lam., cv Gulf and Wilo). Activities of Mg2+ and monomeric Al species in nutrient solution were calculated and used as the basis for expressing the results. The kinetics of net Mg2+ absorption was resolved into (a) a transpiration-dependent uptake component, (b) a metabolically mediated, discontinuous saturable component that is Al3+ sensitive and p-chloromercuribenzene sulfonic acid (PCMBS) resistant, and (c) a linear, carbonyl cyanide m-chlorophenylhydrazone resistant, Al3+ sensitive component that might be a type of facilitated diffusion. Lowering the pH from 6.0 to 4.2 exerted a noncompetitive inhibition of net Mg2+ uptake, while aluminum at 6.6 micromolar Al3+ activity exerted competitive inhibition of net Mg2+ uptake at pH 4.2. The Al3+-induced effect was obvious after 30 minutes. Cultivar-specific ability to retain a higher affinity for Mg2+ by postulated transport proteins in the presence of Al3+ might be one of the mechanisms of differential Al tolerance among ryegrass cultivars.  相似文献   

12.
  • 1.1. Relative to rabbit erythrocytes, chicken red blood cells exhibit a much greater capacity to utilize [3H]adenine for nucleotide synthesis in vitro, even at 5°C and in the absence of added inorganic phosphate.
  • 2.2. This difference is largely due to a higher concentration of phosphoribosylpyrophosphate and greater activity of adenine phosphoribosyltransferase in the avian cells. lli]3. The capacity of avian erythrocytes for utilization of guanine and hypoxanthine is several fold less than that of adenine.
  • 3.4. The data are consistent with lower activity for hypoxanthine/guanine phosphoribosyltransferase than for adenine phosphoribosyltransferase in intact chicken erythrocytes.
  • 4.5. The results indicate that reutilization of adenine by chicken erythrocytes may be physiologically significant.
  相似文献   

13.
Chemical oxidation of mouse erythrocytes has been carried out using two different oxidizing systems namely: Diamide and Ascorbate/Fe3+ together with different concentrations of the oxidant. These oxidation treatments produced different extents of modification in membrane proteins as was observed by electrophoretic analyses that showed a possible formation of high molecular weight aggregates. Lipid peroxidation was also observed as the result of these chemical treatments. The action of these two oxidation treatments produced different extents of lipid peroxidation in which the effect Ascorbate/Fe3+ reached higher values than that shown by diamide treatments. To study the resulting in vitro behavior of such oxidized erythrocytes, we have evaluated the recognition of oxidized erythrocytes by peritoneal macrophages. In the conditions used, diamide oxidized erythrocytes were more highly recognized by macrophages than Ascorbate/Fe3+ treated erythrocytes. However, in both cases an influence of serum factors in the recognition process can be inferred. Additionally, we have correlated on one side the action of different oxidation systems on mouse erythrocytes with different in vivo behavior and organ uptake of the oxidized erythrocytes. On the other side, differential targeting of oxidized erythrocytes to a liver or spleen was observed on dependence of the oxidant used.  相似文献   

14.
BACKGROUNDAs the third most abundant element, aluminum is widespread in the environment. Previous studies have shown that aluminum has a neurotoxic effect and its exposure can impair neuronal development and cognitive function.AIMTo study the effects of aluminum on epigenetic modification in neural stem cells and neurons. METHODSNeural stem cells were isolated from the forebrain of adult mice. Neurons were isolated from the hippocampi tissues of embryonic day 16-18 mice. AlCl3 at 100 and 200 μmol/L was applied to stem cells and neurons. RESULTSAluminum altered the differentiation of adult neural stem cells and caused apoptosis of newborn neurons while having no significant effects on the proliferation of neural stem cells. Aluminum application also significantly inhibited the dendritic development of hippocampal neurons. Mechanistically, aluminum exposure significantly affected the levels of DNA 5-hydroxy-methylcytosine, 5-methylcytosine, and N6-methyladenine in stem cells and neurons. CONCLUSIONOur findings indicate that aluminum may regulate neuronal development by modulating DNA modifications.  相似文献   

15.
Malignant tumors require a blood supply in order to survive and spread. These tumors obtain their needed blood from the patient''s blood stream by hijacking the process of angiogenesis, in which new blood vessels are formed from existing blood vessels. The CXCR2 (chemokine (C-X-C motif) receptor 2) receptor is a transmembrane G-protein-linked molecule found in many cells that is closely associated with angiogenesis1. Specific blockade of the CXCR2 receptor inhibits angiogenesis, as measured by several assays such as the endothelial tube formation assay. The tube formation assay is useful for studying angiogenesis because it is an excellent method of studying the effects that any given compound or environmental condition may have on angiogenesis. It is a simple and quick in vitro assay that generates quantifiable data and requires relatively few components. Unlike in vivo assays, it does not require animals and can be carried out in less than two days. This protocol describes a variation of the extracellular matrix supporting endothelial tube formation assay, which tests the CXCR2 receptor.  相似文献   

16.
The diffusion coefficients for the exchange of potassium across the membrane of erythrocytes of humans, rats, and rabbits have been determined by the use of artificially radioactive potassium, both into and out of the erythrocytes both in vitro and in vivo. The diffusion coefficients found in minutes–1 were 0.2 to 0.25 x 10–3 for human, 0.32 to 0.665 x 10–3 for rabbits, and 1.0 x 10–3 for rat erythrocytes. Rabbit erythrocytes appear to be more permeable in vivo. Reasons are advanced to explain the failure of earlier workers to demonstrate appreciable exchange of potassium in erythrocytes.  相似文献   

17.
18.

Background

Azathioprine triggers suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and exposure of phosphatidylserine at the erythrocyte surface. Eryptosis may accelerate the clearance of Plasmodium -infected erythrocytes. The present study thus explored whether azathioprine influences eryptosis of Plasmodium -infected erythrocytes, development of parasitaemia and thus the course of malaria.

Methods

Human erythrocytes were infected in vitro with Plasmodium falciparum (P. falciparum) (strain BinH) in the absence and presence of azathioprine (0.001 – 10 μM), parasitaemia determined utilizing Syto16, phosphatidylserine exposure estimated from annexin V-binding and cell volume from forward scatter in FACS analysis. Mice were infected with Plasmodium berghei (P. berghei) ANKA by injecting parasitized murine erythrocytes (1 × 106) intraperitoneally. Where indicated azathioprine (5 mg/kg b.w.) was administered subcutaneously from the eighth day of infection.

Results

In vitro infection of human erythrocytes with P. falciparum increased annexin V-binding and initially decreased forward scatter, effects significantly augmented by azathioprine. At higher concentrations azathioprine significantly decreased intraerythrocytic DNA/RNA content (≥ 1 μM) and in vitro parasitaemia (≥ 1 μM). Administration of azathioprine significantly decreased the parasitaemia of circulating erythrocytes and increased the survival of P. berghei -infected mice (from 0% to 77% 22 days after infection).

Conclusion

Azathioprine inhibits intraerythrocytic growth of P. falciparum, enhances suicidal death of infected erythrocytes, decreases parasitaemia and fosters host survival during malaria.  相似文献   

19.
In order to evaluate the effect of cadmium (Cd2+) toxicity on mineral nutrient accumulation in potato (Solanum tuberosum L.), two cultivars named Asterix and Macaca were cultivated both in vitro and in hydroponic experiments under increasing levels of Cd2+ (0, 100, 200, 300, 400 and 500 μM in vitro and 0, 50, 100, 150 and 200 μM in hydroponic culture). At 22 and 7 days of exposure to Cd2+, for the in vitro and hydroponic experiment, respectively, the plantlets were separated into roots and shoot, which were analyzed for biomass as well as Cd2+, and macro (Ca2+, K+ and Mg2+) and micronutrient (Cu2+, Fe2+, Mn2+ and Zn2+) contents. In the hydroponic experiment, there was no reduction in shoot and root dry weight for any Cd2+ level, regardless of the potato cultivar. In contrast, in the in vitro experiment, there was an increase in biomass at low Cd2+ levels, while higher Cd2+ levels caused a decrease. In general, Cd2+ decreased the macronutrient and micronutrient contents in the in vitro cultured plantlets in both roots and shoot of cultivars. In contrast, the macronutrient and micronutrient contents in the hydroponically grown plantlets were generally not affected by Cd2+. Our data suggest that the influence of Cd2+ on nutrient content in potato was related to the level of Cd2+ in the substrate, potato cultivar, plant organ, essential element, growth medium and exposure time.  相似文献   

20.
Aniol A 《Plant physiology》1984,76(3):551-555
Preincubation of wheat (Triticum aestivum L. Thell.) seedlings in a nutrient solution containing low doses of aluminum (0.5 microgram per milliliter for tolerant cultivar Atlas 66 and 0.1 microgram per milliliter for the sensitive cultivar Grana) enabled substantial root regrowth of varieties grown in a lethal aluminum concentration, despite an increased accumulation of aluminum in root tissue of the pretreated seedlings. The distribution of aluminum in the subcellular fractions remained unchanged. The increase in tolerance was completely abolished by the addition of cycloheximide. Aluminum ions at sublethal concentrations significantly increased the incorporation of [14C]valine and [3H]thymidine in roots. The possible role of the synthesis of the inducible aluminum binding protein in the mechanism of aluminum tolerance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号