首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of leishmania parasites with macrophages is known to be receptor mediated. Previous study from this laboratory (J. Parasitol. 82:632, 1996) showed the significant involvement of LPG and gp63 receptors in the recognition of virulent strains onto the macrophages. The role of carbohydrate receptors--the other major receptors besides LPG and gp63 receptors, in the recognition of both virulent (strains AG83 and GE1) and avirulent (strain UR6) leishmania onto the host macrophages has been the major focus of the present investigation. Various neoglycoproteins were used as efficient ligands to preblock the carbohydrate receptors on the macrophage surface. Similarly, various sugar specific lectins were used to preblock the corresponding carbohydrate ligands on the parasite surface. When these preblocked macrophages or parasites were used to study their mode of recognition, it was obvious from the findings that avirulent leishmania promastigotes possibly use the mannosyl fucosyl receptors (MFR) more avidly for their initial attachment and subsequent internalization into the macrophages whereas the virulent leishmania exhibits limited use of this receptor. When a macrophage-like cell line (J774), lacking in MFR, was purposely selected to test the previous findings, as expected, the attachment of avirulent promastigotes (UR6) onto the cell line was found to be negligible when compared to the peritoneal macrophages. Thus, it appears that avirulent leishmania promastigotes probably utilize MFR significantly for their initial recognition and subsequent internalization by macrophages.  相似文献   

2.
We examined the role of the macrophage receptor for C3bi, the CR3, in the phagocytosis of Leishmania major promastigotes and report that M1/70, a monoclonal antibody to the CR3, inhibited the binding of leishmania to macrophages both when the assays were performed in the presence of normal serum and in its absence. In serum, leishmania activate complement and fix C3. Fixation and subsequent cleavage to C3bi occurs rapidly, and by as early as 5 min both forms of the molecule can be identified on the parasites' surface. Complement fixation results in an enhanced phagocytosis of leishmania promastigotes by mouse macrophages. In the case of L. major, 63% of this serum-enhanced binding is inhibitable by M1/70. Binding assays were also performed in the absence of serum with the use of thoroughly washed promastigotes. The addition of M1/70 inhibited binding under these conditions by 54%. Two other rat monoclonal antibodies directed against different antigens on the macrophage plasma membrane did not inhibit binding. M1/70 did not inhibit the binding of promastigotes to rat bone marrow cells, nor did it inhibit IgG-SRBC binding to mouse peritoneal macrophages. These data indicate that the inhibition observed in the presence of M1/70 was specific for the CR3 and that the macrophage receptor for C3bi plays a major role in the phagocytosis of Leishmania major promastigotes, even in the absence of serum.  相似文献   

3.
Previous reports have suggested that Leishmania spp. interact with macrophages by binding to Mac-1 (CD1 1b/CD18), a member of the leukocyte integrin family. To better define this interaction, we tested the ability of leishmania promastigotes to bind to purified leukocyte integrins and to cloned integrins expressed in COS cells. We show that leishmania promastigotes bind to cellular or purified Mac-1 but not lymphocyte function-associated antigen-1 in a specific, dose-dependent manner that requires the presence of serum. Binding is inhibited with specific monoclonal antibodies to Mac-1. In the absence of complement opsonization, three different species of leishmania tested fail to bind directly to any of the three leukocyte integrins. We show that binding to Mac-1 requires the third component of complement (C3). Organisms incubated in heat-inactivated serum or serum that has been immunologically depleted of C3 fail to bind to Mac-1. Because the addition of purified C3 to C3-depleted serum restores leishmania binding to Mac-1, we suggest that parasites gain entry into macrophages by fixing complement and subverting a well-characterized adhesive interaction in the immune system between Mac-1 and iC3b.  相似文献   

4.
The intracellular amastigote form of leishmania is responsible for the cell-to-cell spread of leishmania infection in the mammalian host. In this report, we identify a high-affinity, heparin-binding activity on the surface of the amastigote form of leishmania. Amastigotes of Leishmania amazonensis bound approximately 120,000 molecules of heparin per cell, with a Kd of 8.8 x 10(-8) M. This heparin-binding activity mediates the adhesion of amastigotes to mammalian cells via heparan sulfate proteoglycans, which are expressed on the surface of mammalian cells. Amastigotes bound efficiently to a variety of adherent cells which express cell-surface proteoglycans. Unlike wild-type CHO cells, which bound amastigotes avidly, CHO cells with genetic deficiencies in heparan sulfate proteoglycan biosynthesis or cells treated with heparitinase failed to bind amastigotes even at high parasite-input dosages. Cells which express normal levels of undersulfated heparan bound amastigotes nearly as efficiently as did wild-type cells. The adhesion of amastigotes to wild-type nonmyeloid cells was almost completely inhibited by the addition of micromolar amounts of soluble heparin or heparan sulfate but not by the addition of other sulfated polysaccharides.l Binding of amastigotes to macrophages, however, was inhibited by only 60% after pretreatment of amastigotes with heparin, suggesting that macrophages have an additional mechanism for recognizing amastigotes. These results suggest that leishmania amastigotes express a high-affinity, heparin-binding activity on their surface which can interact with heparan sulfate proteoglycans on mammalian cells. This interaction may represent an important first step in the invasion of host cells by amastigotes.  相似文献   

5.
The parasitic protozoan Leishmania mexicana differentiates from a non-motile intracellular amastigote in the mammalian macrophage phagolysosome into a motile, extracellular promastigote in the insect vector gut. This developmental program has been accomplished in vitro, thus providing a useful model for studying changes in the cytoskeleton during cell differentiation. The role of microtubules in leishmania differentiation was demonstrated by using the dinitroaniline herbicide oryzalin, which inhibited both leishmania proliferation and differentiation; 25 microM oryzalin reduced promastigote division by over 95%. Interestingly, at a sublethal dose (5 microM), promastigotes became round and multiflagellated but remained motile. At 50 microM oryzalin, the number of intracellular amastigotes decreased by 50%. However, leishmania differentiation seemed to be the most drug-sensitive stage: there was a 60% reduction in amastigote-to-promastigote differentiation at 0.5 microM oryzalin. The specific action of oryzalin on leishmania microtubules was verified by its inhibition of in vitro polymerization of leishmania microtubules, but not control mammalian microtubules (from rat brain). These findings indicate that microtubules play a major role in leishmania proliferation, maintenance of cell shape, and cytodifferentiation.  相似文献   

6.
The macrophage protein tyrosine phosphatase-1 SHP-1 has been implicated in the pathogenesis of infection with leishmania. To identify the factors that may interact with SHP-1, Leishmania donovani promastigote lysates were added to a GST-SHP-1 affinity matrix. A 44 kDa specifically bound protein was identified as leishmania fructose-1,6-bisphosphate aldolase (aldolase). Purified leishmania aldolase bound to SHP-1 indicating that the interaction was direct. In contrast, purified mammalian aldolase did not bind to SHP-1. Consistent with this, leishmania aldolase activated SHP-1 in vitro, whereas mammalian aldolase did not. The presence of leishmania aldolase in the cytosolic fractions prepared from infected macrophages indicated that leishmania aldolase is exported from phagolysosomes in infected cells where it can target host cytosolic proteins. In fact, co-immunoprecipitation showed association of leishmania aldolase with SHP-1. Moreover, leishmania aldolase-expressing macrophages showed the deactivated phenotype of leishmania infected cells as judged by much reduced inability to induce expression of nitric-oxide synthase in response to interferon-γ treatment. Collectively, these data show that leishmania aldolase is a novel SHP-1 binding and activating protein that contributes to macrophage dysfunction.  相似文献   

7.
Macrophages are pivotal cells in interactions of man and leishmania. Leishmanial disease results from intracellular infection of macrophages: parasitized cells are seen in smears or biopsy specimens of lesions; macrophages cultured in vitro support replication of parasites. Paradoxically, parasite destruction is also mediated by macrophages, which become highly cytotoxic after exposure to immune lymphocytes or their lymphokine (LK) products. The precise molecular mechanisms by which lymphocytes or LK induce macrophage activation for leishmanicidal activity, however, are not yet known. We analyzed interactions of leishmania amastigotes with human monocytes cultured in vitro as a nonadherent cell pellet. Leishmania donovani and L. major replicated in freshly isolated monocytes. Monocytes treated with greater than 200 IU/ml of the LK, human Interferon-gamma (IFN-gamma), destroyed tumor cells and L. donovani, but not L. major. Phorbol myristate acetate, endotoxic bacterial lipopolysaccharide, and recombinant human IFN-alpha and IFN-beta did not induce cytotoxicity. The time course for induction of cytotoxicity contrasted sharply with that of previously described monocyte antileishmanial activity: IFN-gamma induced cytotoxicity even when added after infection with L. donovani; induction of cytotoxicity did not require that IFN-gamma be present throughout the period of culture after infection: a 30-min preinfection pulse of IFN-gamma was sufficient to induce 70% of maximal activity; and freshly isolated monocytes and cells cultured for up to 4 days in vitro prior to infection and IFN-gamma treatment were equally responsive to IFN-gamma. These studies provide convincing evidence for intracellular cytotoxicity for L. donovani by freshly isolated human monocytes. This system provides an important base for further analysis of induction and expression of cytotoxic mechanisms against leishmania and other intracellular organisms that cause human disease.  相似文献   

8.
Leishmania species are dimorphic protozoan parasites that live and replicate in the gut of sand flies as promastigotes or in mammalian hosts as amastigotes. Different immune cells, including DCs, and receptors differ in their involvement in phagocytosis of promastigotes and amastigotes and in recognition of different Leishmania species. In the case of L. mexicana, differences in phagocytosis of promastigotes and amastigotes by DCs and participation of C‐type lectin receptors (CLRs) have not been established. In the present study, flow cytometry and confocal microscopy were used to investigate the phagocytosis by monocyte‐derived dendritic cells (moDCs) of L. mexicana promastigotes and amastigotes in the presence or absence of immune serum during various periods of time. Blocking antibodies against mannose receptors and DC‐SIGN were used to explore the participation of these receptors in the phagocytosis of L. mexicana by moDC. The major differences in interactions of L. mexicana promastigotes and amastigotes with moDC were found to occur within the first 3 hr, during which phagocytosis of promastigotes predominated as compared with opsonization of promastigotes and amastigotes. However, after 6 hr of incubation, opsonized promastigotes were preferentially phagocytosed as compared with unopsonized promastigotes and amastigotes and after 24 hr of incubation there were no differences in the phagocytosis of promastigotes and amastigotes. Finally, after 3 hr incubation, DC‐SIGN was involved in the phagocytosis of promastigotes, but not of amastigotes.  相似文献   

9.
The mechanism by which promastigotes of Leismania donovani enter hamster peritoneal macrophages was studied in vitro by light and electron microscopy. Quantitative light microscope studies showed a time-dependent increase of intracellular parasites, which had no preferable orientation during entry. Scanning and transmission electron microscopy revealed striking host-parasite surface interactions marked by the formation of whorled pseudopodia around the promastigotes in the early stage and engulfment of the parasites akin to normal phagocytosis in the later phase. Early host-parasite interactions were categorized quantitatively by scanning electron microscopy into several types, of which “head-first entry” and “tail-first entry” were approximately equal in frequency of occurrence, confirming light microscope observations. Cytochalasin B at 10 μg/ml prevented the intracellular entry of the parasites and the formation of macrophage-originated pseudopodia normally seen to seize the promastigotes. Killed, but morphologically intact, promastigotes were poorly taken up by macrophages and lacked certain types of interactions normally encountered with macrophage pseudopodia. Motility of promastigotes and their affinity to the surface of macrophages are suggested as elements of importance which parasites contribute to aid the process of their entry. The above results indicate that promastigotes of L. donovani depend on phagocytic activity of macrophages to gain intracellular entrance, but parasite-specific activities and/or properties may also play a role. It is suggested that “facilitated phagocytosis” may be used to describe this unique type of endocytosis associated with leishmania-macrophage interactions.  相似文献   

10.
Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes--which were destroyed--differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation--a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs.  相似文献   

11.
The protozoan parasite Leishmania is an intracellular pathogen infecting and replicating inside vertebrate host macrophages. A recent model suggests that promastigote and amastigote forms of the parasite mimic mammalian apoptotic cells by exposing phosphatidylserine (PS) at the cell surface to trigger their phagocytic uptake into host macrophages. PS presentation at the cell surface is typically analyzed using fluorescence-labeled annexin V. Here we show that Leishmania promastigotes can be stained by fluorescence-labeled annexin V upon permeabilization or miltefosine treatment. However, combined lipid analysis by thin-layer chromatography, mass spectrometry and (31)P nuclear magnetic resonance (NMR) spectroscopy revealed that Leishmania promastigotes lack any detectable amount of PS. Instead, we identified several other phospholipid classes such phosphatidic acid, phosphatidylethanolamine; phosphatidylglycerol and phosphatidylinositol as candidate lipids enabling annexin V staining.  相似文献   

12.
13.
Leishmania donovani ADP-ribosylation factor-like protein 3A (LdARL-3A) is a small G protein isolated from the protozoan parasite L. donovani with no defined physiological function. Previously [Cuvillier, A., Redon, F., Antoine, J.-C., Chardin, P., DeVos, T., and Merlin, G. (2000) J Cell Sci 113: 2065-2074] we have shown that overexpression in L. amazonensis promastigotes of the mutated protein LdARL-3A-Q70L, which remains constitutively associated with GTP, leads to the disappearance of the flagellum but does not impair cell viability or growth. Here we report that parasites overexpressing LdARL-3A-Q70L can invade in vitro cultivated macrophages to the same extent as control cells, demonstrating that the flagellum is not necessary for attachment to or engulfment into macrophages. These infections are productive because amastigotes differentiate and multiply. However, aflagellated LdARL-3A-Q70L-overexpressing Leishmania promastigotes could not survive in experimentally infected Lutzomyia longipalpis insect vectors, in contrast to untransfected or native LdARL-3A-overexpressing cells. Overexpression of the native and mutated proteins did not modify in vitro procyclic to metacyclic lipophosphoglycan maturation or differentiation from procyclic to metacyclic promastigotes, nevertheless there is a block in transmission of Leishmania. Better understanding of LdARL-3A pathways, notably those regarding flagellum biogenesis, may lead to the future development of Leishmania-specific drugs, which may stop parasite transmission in nature without affecting other species.  相似文献   

14.
Leishmania pathogenesis is primarily studied using the disease-inducing promastigote stage of Leishmania major. Despite many efforts, all attempts so far have failed to culture the disease-relevant multiplying amastigote stage of L. major. Here, we established a stably growing axenic L. major amastigote culture system that was characterized genetically, morphologically, and by stage-specific DsRed protein expression. We found parasite stage-specific disease development in resistant C57BL/6 mice. Human neutrophils, as first host cells for promastigotes, do not take up amastigotes. In human macrophages, we observed an amastigote-specific complement receptor 3-mediated, endocytotic entry mechanism, whereas promastigotes are taken up by complement receptor 1-mediated phagocytosis. Promastigote infection of macrophages induced the inflammatory mediators TNF, CCL3, and CCL4, whereas amastigote infection was silent and resulted in significantly increased parasite numbers: from 7.1 ± 1.4 (after 3 h) to 20.1 ± 7.9 parasites/cell (after 96 h). Our study identifies Leishmania stage-specific disease development, host cell preference, entry mechanism, and immune evasion. Since the amastigote stage is the disease-propagating form found in the infected mammalian host, the newly developed L. major axenic cultures will serve as an important tool in better understanding the amastigote-driven immune response in leishmaniasis.  相似文献   

15.

Background  

Leishmania and other intracellular pathogens have evolved strategies that support invasion and persistence within host target cells. In some cases the underlying mechanisms involve the export of virulence factors into the host cell cytosol. Previous work from our laboratory identified one such candidate leishmania effector, namely elongation factor-1α, to be present in conditioned medium of infectious leishmania as well as within macrophage cytosol after infection. To investigate secretion of potential effectors more broadly, we used quantitative mass spectrometry to analyze the protein content of conditioned medium collected from cultures of stationary-phase promastigotes of Leishmania donovani, an agent of visceral leishmaniasis.  相似文献   

16.
Leishmania tropica promastigotes stimulate macrophages to produce activated oxygen as measured by luminol-enhanced chemiluminescence. Exogenous superoxide dismutase and catalase inhibit this by 95%, implying that both superoxide and hydrogen peroxide are generated. Whereas leishmania have undetectable levels of catalase, and very little glutathione peroxidase, they have relatively high amcunts of superoxide dismutase (23 units/mg protein). The leishmanial superoxide dismutase is cyanide-insensitive but azide- and peroxide-sensitive, suggesting that the enzyme may be iron-containing. Furthermore, the leishmanial superoxide dismutase is insensitive to diethyldithiocarbamate, which inhibits vertebrate enzymes. Thus, leishmania may contain a superoxide dismutase which is different from its host's enzyme. A specific inhibitor of this enzyme might serve as an antileishmanial agent.  相似文献   

17.
Leishmaniasis is a group of diseases with a large spectrum of clinical manifestations caused by protozoans of the genus Leishmania. Here we demonstrate the leishmanicidal activity of the essential oil of Ocimum gratissimum as well as its main constituent, eugenol. The eugenol-rich essential oil of O. gratissimum progressively inhibited Leishmania amazonensis growth at concentrations ranging from 100 to 1000 microg/ml. The IC50 (sub-inhibitory concentration) of the essential oil for promastigotes and amastigotes were respectively 135 and 100 microg/ml and the IC50 of eugenol was 80 microg/ml for promastigote forms. L. amazonensis exposed to essential oil at concentrations corresponding to IC50 for promastigotes and for amastigotes underwent considerable ultrastructural alterations, as shown by transmission electron microscopy. Two or more nuclei or flagella were observed in 31% and 23.3% of treated amastigote and promastigote forms, respectively, suggesting interference in cell division. Considerable mitochondrial swelling was observed in essential oil-treated promastigotes and amastigotes, which had the inner mitochondrial membrane altered, with a significant increase in the number of cristae; in some amastigotes the mitochondrial matrix became less electron-dense. The minimum inhibitory concentration for both promastigotes and amastigotes was 150 microg/ml. Pretreatment of mouse peritoneal macrophages with 100 and 150 microg/ml essential oil reduced the indices of association between promastigotes and the macrophages, followed by increased in nitric oxide production by the infected macrophages. The essential oil showed no cytototoxic effects against mammalian cells. This set of results suggests that O. gratissimum essential oil and its compounds could be used as sources for new antileishmanial drugs.  相似文献   

18.
A critical review of the roles of host lactoferrin in immunity   总被引:5,自引:0,他引:5  
Lactoferrin (Lf) is an essential element of innate immunity, which refers to antigen-nonspecific defense mechanisms that a host uses immediately or within hours after exposure to an antigen. Following infection, Lf is released from neutrophils (PMNs) in blood and inflamed tissues and, such as other soluble pattern-recognition receptors of the innate immunity, Lf recognizes unique microbial molecules called pathogen-associated molecular patterns (PAMPs): LPS from the gram-negative cell wall and bacterial unmethylated CpG DNA. However, unlike classical PAMPs receptors involved in the activation of immune cells, Lf may act either as a competitor for these receptors or as a partner molecule, depending on the physiological status of the organism. These immunomodulatory properties are explained by the ability of Lf to interact with proteoglycans and receptors on the surface of mammalian cells: cells of the innate (NK cells, neutrophils, macrophages, basophils, neutrophils and mast cells) and adaptive [lymphocytes and antigen-presenting cells (APCs)] immune systems, and also epithelial and endothelial cells. Through these interactions, Lf is able to modulate the migration, maturation and functions of immune cells, and thus to influence both adaptive and innate immunities. The understanding of the roles of the host-expressed Lf in immunity comes from in vivo and in vitro studies with exogenous Lf which, although informative, rarely reflect the pathological, or non-pathological, conditions in the organism. In this review, the data from the literature will be critically analyzed in order to present a real picture of the regulatory roles of host Lf in immunity.  相似文献   

19.
Leishmania chagasi, the cause of South American visceral leishmaniasis, must survive antimicrobial responses of host macrophages to establish infection. Macrophage oxidative responses have been shown to diminish in the presence of intracellular leishmania. However, using electron spin resonance we demonstrated that murine and human macrophages produce O2-during phagocytosis of opsonized promastigotes. Addition of the O2- scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl to cultures resulted in increased infection, suggesting that O2- enhances macrophage leishmanicidal activity. The importance of NO. produced by inducible NO synthase (iNOS) in controlling murine leishmaniasis is established, but its role in human macrophages has been debated. We detected NO. in supernatants from murine, but not human, macrophages infected with L. chagasi. Nonetheless, the iNOS inhibitor N(G)-monomethyl-L-arginine inhibited IFN-gamma-mediated intracellular killing by both murine and human macrophages. According to RNase protection assay and immunohistochemistry, iNOS mRNA and protein were expressed at higher levels in bone marrow of patients with visceral leishmaniasis than in controls. The iNOS protein also increased upon infection of human macrophages with L. chagasi promastigotes in vitro in the presence of IFN-gamma. These data suggest that O2- and NO. each contribute to intracellular killing of L. chagasi in human and murine macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号