首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammals, maternal signals conveyed via influences on hypothalamic-pituitary-adrenal (HPA) activity may shape behavior of the young to be better adapted for prevailing environmental conditions. However, the mother's influence extends beyond classic stress response systems. In guinea pigs, several hours (h) of separation from the mother activates not only the HPA axis, but also the innate immune system, which effects immediate behavioral change, as well as modifies behavioral responsiveness in the future. Moreover, the presence of the mother potently suppresses the behavioral consequences of this innate immune activation. These findings raise the possibility that long-term adaptive behavioral change can be mediated by the mother's influence on immune-related activity of her pups. Furthermore, the impact of social partners on physiological stress responses and their behavioral outcomes are not limited to the infantile period. A particularly crucial period for social development in male guinea pigs is that surrounding the attainment of sexual maturation. At this time, social interactions with adults can dramatically affect circulating cortisol concentrations and social behavior in ways that appear to prepare the male to best cope in its likely future social environment. Despite such multiple social influences on the behavior of guinea pigs at different ages, inter-individual differences in the magnitude of the cortisol response remain surprisingly stable over most of the life span. Together, it appears that throughout the life span, physiological stress responses may be regulated by social stimuli. These influences are hypothesized to adjust behavior for predicted environmental conditions. In addition, stable individual differences might provide a means of facilitating adaptation to less predictable conditions.  相似文献   

2.
The neuropeptide oxytocin (OXT) facilitates prosocial behavior and selective sociality. In the context of stress, OXT also can down-regulate hypothalamic–pituitary–adrenal (HPA) axis activity, leading to consideration of OXT as a potential treatment for many socioaffective disorders. However, the mechanisms through which administration of exogenous OXT modulates social behavior in stressful environmental contexts are not fully understood. Here, we investigate the hypothesis that autonomic pathways are components of the mechanisms through which OXT aids the recruitment of social resources in stressful contexts that may elicit mobilized behavioral responses. Female prairie voles (Microtus ochrogaster) underwent a stressor (walking in shallow water) following pretreatment with intraperitoneal OXT (0.25 mg/kg) or OXT antagonist (OXT-A, 20 mg/kg), and were allowed to recover with or without their sibling cagemate. Administration of OXT resulted in elevated OXT concentrations in plasma, but did not dampen the HPA axis response to a stressor. However, OXT, but not OXT-A, pretreatment prevented the functional coupling, usually seen in the absence of OXT, between paraventricular nucleus (PVN) activity as measured by c-Fos immunoreactivity and HPA output (i.e. corticosterone release). Furthermore, OXT pretreatment resulted in functional coupling between PVN activity and brain regions regulating both sympathetic (i.e. rostral ventrolateral medulla) and parasympathetic (i.e. dorsal vagal complex and nucleus ambiguous) branches of the autonomic nervous system. These findings suggest that OXT increases central neural control of autonomic activity, rather than strictly dampening HPA axis activity, and provides a potential mechanism through which OXT may facilitate adaptive and context-dependent behavioral and physiological responses to stressors.  相似文献   

3.
At the moment of parasitization by another insect, the host Heliothis larva is able to defend itself by the activation of humoral and cellular defenses characterized by unusual reactions of hemocytes in response to external stimuli. Here, we have combined light and electron microscopy, staining reactions, and immunocytochemical characterization to analyze the activation and deactivation of one of the most important immune responses involved in invertebrates defense, i.e., melanin production and deposition. The insect host/parasitoid system is a good model to study these events. The activated granulocytes of the host insect are a major repository of amyloid fibrils forming a lattice in the cell. Subsequently, the exocytosed amyloid lattice constitutes the template for melanin deposition in the hemocel. Furthermore, cross-talk between immune and neuroendocrine systems mediated by hormones, cytokines, and neuromodulators with the activation of stress-sensoring circuits to produce and release molecules such as adrenocorticotropin hormone, alpha melanocyte-stimulating hormone, and neutral endopeptidase occurs. Thus, parasitization promotes massive morphological and physiological modifications in the host insect hemocytes and mimics general stress conditions in which phenomena such as amyloid fibril formation, melanin polymerization, pro-inflammatory cytokine production, and activation of the adrenocorticotropin hormone system occur. These events observed in invertebrates are also reported in the literature for vertebrates, suggesting that this network of mechanisms and responses is maintained throughout evolution.  相似文献   

4.
The immune system of invertebrates can mount different responses, including melanotic encapsulation and several antibacterial defense mechanisms. Variation of the efficacies of these responses is generally considered to be a product of the evolutionary pressure on each response due to infection by parasites. However, potential interactions and trade-offs among the different responses of the immune system could constrain the evolutionary potential of each response. In a natural population of the mosquito Anopheles gambiae, we measured the genetic association between the melanization response and an antibacterial response in two environmental qualities (well-fed and undernourished larvae). In both environments the two immune responses were positively genetically correlated: in full-sib families that were most likely to melanize a bead, injected bacteria were most likely to be cleared. Thus, our data do not support the idea of a trade-off among different outcomes of the invertebrate immune system, but rather that some families are overall immunologically superior to others.  相似文献   

5.
在长期进化的过程中,无脊椎动物逐渐形成了受体识别-信号传导-免疫应答为特征的天然免疫体系,以清除凋亡细胞或外界的病原微生物。清道夫受体(SRs)是一类位于细胞表面的跨膜受体,也是一类参与无脊椎动物天然免疫反应的重要模式识别受体。清道夫受体参与免疫反应的异己靶标识别,通过下游信号级联调控抗菌肽合成和吞噬作用。本文综述了无脊椎动物清道夫受体的种类、结构及其参与天然免疫的调控机制,探讨了无脊椎动物清道夫受体研究中尚待解决的问题。  相似文献   

6.
Developmental plasticity of HPA and fear responses in rats has been proposed to be mediated by environment-dependent variation in active maternal care. Here, we review this maternal mediation hypothesis based on the postnatal manipulation literature and on our own recent research in rats. We show that developmental plasticity of HPA and fear responses in rats cannot be explained by a linear single-factor model based on environment-dependent variation in active maternal care. However, by adding environmental stress as a second factor to the model, we were able to explain the variation in HPA and fear responses induced by postnatal manipulations. In this two-factor model, active maternal care and environmental stress (as induced, e.g., by long maternal separations or maternal food restriction) exert independent, yet opposing, effects on HPA reactivity and fearfulness in the offspring. This accounts well for the finding that completely safe and stable, as well as, highly stressful maternal environments result in high HPA reactivity and fearfulness compared to moderately challenging maternal environments. Furthermore, it suggests that the downregulation of the HPA system in response to stressful maternal environments could reflect adaptive developmental plasticity based on the increasing costs of high stress reactivity with increasingly stressful conditions. By contrast, high levels of environmental stress induced by environmental adversity might constrain such adaptive plasticity, resulting in non-adaptive or even pathological outcomes. Alternatively, however, developmental plasticity of HPA and fear responses in rats might be a function of maternal HPA activation (e.g., levels of circulating maternal glucocorticoid hormones). Thus, implying a U-shaped relationship between maternal HPA activation and HPA reactivity and fearfulness in the offspring, increasing maternal HPA activation with increasing environmental adversity would explain the effects of postnatal manipulations equally well. This raises the possibility that variation in active maternal care is an epiphenomenon, rather than a causal factor in developmental plasticity of HPA and fear responses in rats. Developmental plasticity of HPA and fear responses in rats and other animals has important implications for the design of animal experiments and for the well-being of experimental animals, both of which depend on the exact underlying mechanism(s). Importantly, however, more naturalistic approaches are needed to elucidate the adaptive significance of environment-dependent variation of HPA reactivity and fearfulness in view of discriminating between effects reflecting adaptive plasticity, phenotypic mismatch and pathological outcomes, respectively.  相似文献   

7.
The aim of this study was to characterize the effects of brain natriuretic peptide (BNP) on the hypothalamo-pituitary-adrenal (HPA) responses to different stress paradigms (ether stress, electric shock and restraint). Rats were subjected to the stressful stimuli after intracerebroventricular administration of BNP (32.5 ng-6.5 microg) and plasma corticosterone was used as an indicator of the HPA activation. BNP did not modify the basal secretion, but inhibited the stress-induced rise in plasma corticosterone in a dose-dependent manner. BNP proved most effective in decreasing the corticosterone response to ether stress and attenuated the electric shock and restraint-induced HPA activation to a lesser extent. These results confirm the view that BNP takes part in the regulation of the HPA system.  相似文献   

8.
Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies.  相似文献   

9.
Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While positive social interactions can attenuate stress and promote health, the social environment can also be a major source of stress when it includes social disruption, confrontation, isolation, or neglect. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

10.
The hypothalamic–pituitary–adrenal (HPA) axis modulates individuals' physiological responses to social stress, which is an inevitable aspect of the daily lives of group‐living animals. Previous nonhuman primate studies have reported that sex, age, rank, and reproductive condition influence cortisol levels under stressful conditions. In this study we investigated cortisol responses to stress among 70 multiparous, free‐ranging female rhesus macaques (Macaca mulatta) on the island of Cayo Santiago, PR. Plasma cortisol samples were collected in two consecutive years under similar conditions. Twenty‐two females were sampled both years, and most of those females were lactating in only one of the years. Individual differences in cortisol levels were stable across years, even though reproductive condition changed for most individuals. No relationship was found between age or social rank and cortisol levels. Of the females that changed reproductive conditions, cortisol levels were higher when they were lactating than when they were cycling, and the amount of change in cortisol from cycling to lactating was greatest for low‐ranking individuals. Heightened reactivity to stress during lactation may be the result of concerns about infant safety, and such concerns may be higher among low‐ranking mothers than among higher ranking mothers. Psychosocial stress and hyperactivation of the HPA axis during lactation can suppress immune function and increase vulnerability to infectious diseases, thus explaining why adult females in the free‐ranging rhesus macaque population on Cayo Santiago have a higher probability of mortality during the birth season than during the mating season. Am. J. Primatol. 72:559–565, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The immune response in fish: a review   总被引:2,自引:0,他引:2  
The literature relating to the immune response of fish has been reviewed. Non-specific immune mechanisms similar to those of other vertebrate classes occur in fish. Similarly specific cell-mediated immunity has been demonstrated at all levels of evolution, from the cyclostomes to the teleosts. A humoral antibody system also occurs in all classes offish but varies considerably in relation to phylogenetic status. In the cyclostomes, only immuno-proteins with properties intermediate between the immunoglobulms of vertebrates and the non-specific agglutinins and lysins of invertebrates have been demonstrated. In the elasmo-branchs and chondrosteans 7 and 19s irnmunoglobulins of IgM type occur. In holosteans the 19s form is predominant whereas in teleosts, 7 and 19s forms occur, with some evidence of specialization in the 7s form. In the phylogenetically most advanced fish, the Dipnoi, two immunoglobulin classes, structurally analogous to IgM and IgG, have been described.
A characteristic feature of both cell-mediated and antibody mediated immune responses in fish is their dependence upon environmental temperature. There is also evidence that, in some species at least, nutritional factors and behaviour patterns may also influence the immune response.
Attempts at artificial immunization of fish against infectious disease have met with varied success. It is probable that better results could be achieved with live vaccine strains, particularly if applied under conditions optimal for the immune responses.  相似文献   

12.
Zhang N  Xu B  Mou C  Yang W  Wei J  Lu L  Zhu J  Du J  Wu X  Ye L  Fu Z  Lu Y  Lin J  Sun Z  Su J  Dong M  Xu A 《FEBS letters》2003,550(1-3):124-134
A cDNA library of male Chinese seahorse (Hippocampus kuda Bleeker) was constructed to investigate the molecular profile of seahorse as one of the most famous traditional Chinese medicine materials, and to reveal immunological and physiological mechanisms of seahorse as one of the most primitive vertebrates at molecular level. A total of 3372 expressed sequence tags (ESTs) consisting of 1911 unique genes (345 clusters and 1566 singletons) were examined in the present study. Identification of the genes related to immune system, paternal brooding and physiological regulation provides not only valuable insights into the molecular mechanism of immune system in teleost fish but also plausible explanations for pharmacological activities of Chinese seahorse. Furthermore, the occurrence of high prevalent C-type lectins suggested that a lectin-complement pathway might exert a more dominant function in the innate immune system of teleost than mammal. Carbohydrate recognition domain (CRD) without a collagen-like region in the lectins of seahorse was likely an ancient characteristic of lectins similar to invertebrates.  相似文献   

13.
Exposure to stress induces profound physiological and behavioral changes in the organisms and some of these changes may be important regarding stress-induced pathologies and animal models of psychiatric diseases. Consequences of stress are dependent on the duration of exposure to stressors (acute, chronic), but also of certain characteristics such as intensity, controllability, and predictability. If some biological variables were able to reflect these characteristics, they could be used to predict negative consequences of stress. Among the myriad of physiological changes caused by stress, only a restricted number of variables appears to reflect the intensity of the situation, mainly plasma levels of ACTH and adrenaline. Peripheral hypothalamic-pituitary-adrenal (HPA) hormones (ACTH and corticosterone) are also able to reflect fear conditioning. In contrast, the activation of the HPA axis is not consistently related to anxiety as evaluated by classical tests such as the elevated plus-maze. Similarly, there is no consistent evidence about the sensitivity of the HPA axis to psychological variables such as controllability and predictability, despite the fact that: (a) lack of control over aversive stimuli can induce behavioral alterations not seen in animals which exert control, and (b) animals showed clear preference for predictable versus unpredictable stressful situations. New studies are needed to re-evaluate the relationship between the HPA axis and psychological stress characteristics using ACTH instead of corticosterone and taking advantages of our current knowledge about the regulation of this important stress system.  相似文献   

14.
15.
Tropical labrids Hemigymnus melapterus sampled underwater had low plasma levels of cortisol, glucose, and lactate. Plasma cortisol levels were elevated by capture stress within 5–6 min, while glucose and lactate levels were not. Plasmalevels of cortisol and glucose increased after 2–4 h of handling and transport to the laboratory. Levels of cortisol and glucose fell with laboratory acclimation back to values similar to those found in wild fish. Parasitism by gnathiid isopods across an order of magnitude of isopod numbers had no effect on plasma levels of cortisol or glucose. Thus, H. melapterus has a stress response similar to that shown by temperate species, and relatively high parasite loads are not apparently stressful to fish in the wild. This may be related to the counterproductive effects of physiological stress responses on the immune system or behaviour-modulated processes that counter parasitic invasion.  相似文献   

16.
Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is a key component of the vertebrate stress response. Prior studies have found that variation in HPA responses were correlated to measures of fitness and physiological condition. In addition, sexually-selected traits have also been found to correlate to measures of condition. The proximate mechanisms responsible for such covariation between sexually selected traits and measures of quality are unclear, but could involve variation in HPA regulation. We investigated whether HPA activity is related to song complexity, body size/condition and leukocyte profiles in wild male song sparrows (Melospiza melodia). We characterized three aspects of HPA activity: 1) response to restraint stress; 2) negative feedback, assessed by the ability of exogenous dexamethasone to suppress corticosterone levels; and 3) adrenal sensitivity to exogenous adrenocorticotropic hormone (ACTH). Birds with lower responses to restraint stress had more complex song and more heterophils and higher heterophil to lymphocyte (H:L) ratios. Birds with more effective negative feedback were larger and had fewer heterophils and lower H:L ratios, suggesting lower levels of physiological stress or infection. We observed no relationship between adrenal sensitivity to exogenous ACTH and any of the factors. These findings illustrate important relationships between HPA activity, song complexity, and morphological and physiological traits. Song complexity may thus provide receivers with information about the ability of the singer to cope with stressors.  相似文献   

17.
Invertebrates do not display the level of sophistication in immune reactivity characteristic of mammals and other 'higher' vertebrates. Their great number and diversity of forms, however, reflect their evolutionary success and hence they must have effective mechanisms of defence to deal with parasites and pathogens and altered self tissues. Inflammation appears to be an important first line defence in all invertebrates and vertebrates. This brief review deals with the inflammatory responses of invertebrates and fish concentrating on the cell types involved and the mediators of inflammation, in particular, eicosanoids, cytokines and adhesion molecules.  相似文献   

18.
Mild psychological stressors provoke an acute rise in core temperature (T(C)), stimulate the hypothalamo-pituitary-adrenocortical (HPA) axis, and induce various stress-related behaviors. In the present study, we examined the effect of ablation of the anteroventral third ventricle region (AV3V) on both physiological and behavioral responses to a novel environment. T(C) was monitored in male Sprague-Dawley rats, with either sham or AV3V lesions, during a 5-h exposure to a novel environment. Trunk blood was collected, in a second group of rats, for the assessment of plasma levels of ACTH and corticosterone. Novelty-induced grooming and rearing behaviors were assessed in a third group of animals. T(C) was elevated in all animals after 30 min in the novel environment, but the rise was exaggerated in rats with AV3V lesions ( approximately 0.5 degrees C). AV3V-lesion rats maintained a higher core temperature for 2 h before it returned to the same level as the control group. Plasma levels of ACTH and corticosterone were also exaggerated in the AV3V lesion group after 30 min in a novel environment. In contrast to the physiological responses, the behavioral measures of grooming and rearing revealed no differences between the groups. The results from the current study suggest that neurons within the AV3V region exert an inhibitory influence on the HPA axis and fever developed in response to stressful psychological stimuli. They also confirm that the physiological and hormonal components of the stress response are independent of certain behavioral measures of stress.  相似文献   

19.
Numerous studies of the mammalian immune system have begun to uncover profound interrelationships, as well as fundamental differences, between the adaptive and innate systems of immune recognition. Coincident with these investigations, the increasing experimental accessibility of non-mammalian jawed vertebrates, jawless vertebrates, protochordates and invertebrates has provided intriguing new information regarding the likely patterns of emergence of immune-related molecules during metazoan phylogeny, as well as the evolution of alternative mechanisms for receptor diversification. Such findings blur traditional distinctions between adaptive and innate immunity and emphasize that, throughout evolution, the immune system has used a remarkably extensive variety of solutions to meet fundamentally similar requirements for host protection.  相似文献   

20.
棘皮动物免疫学研究进展   总被引:11,自引:0,他引:11  
棘皮动物属原始后口动物、无脊椎动物的最高等类群,它处于由无脊椎动物向脊椎动物开始分支进化的阶段.研究棘皮动物的免疫功能和作用机理,对从比较免疫学角度探讨动物免疫系统进化过程有承前启后的重要意义.因此,有必要对棘皮动物的免疫学研究进展作一个较全面的综述,并理清未来的研究热点和方向.棘皮动物与其他无脊椎动物一样具有先天性免疫系统,但未发现脊椎动物所具有的获得性免疫.其免疫应答是由参与免疫反应的效应细胞——体腔细胞和多种体液免疫因子共同介导的.比较免疫学分析表明,棘皮动物存在脊椎动物补体系统的替代途径和凝集素途径,但未发现经典途径和明确的终端途径.棘皮动物先天性免疫系统存在数量庞大的基因家族.今后应加强对未知免疫相关基因、蛋白质、信号传导途径及效应分子的研究,回答免疫系统的起源、功能和进化等问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号