首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background information. At fertilization in mammalian eggs, the sperm induces a series of Ca2+ oscillations via the production of inositol 1,4,5‐trisphosphate. Increased inositol 1,4,5‐trisphosphate production appears to be triggered by a sperm‐derived PLCζ (phospholipase C‐ζ) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5‐bisphosphate hydrolytic activity of PLCζ implies that DAG (diacylglycerol) production, and hence PKC (protein kinase C) stimulation, also occurs during mammalian egg fertilization. Fertilization‐mediated increase in PKC activity has been demonstrated; however, its precise role is unclear. Results. We investigated PLCζ‐ and fertilization‐mediated generation of DAG in mouse eggs by monitoring plasma‐membrane translocation of a fluorescent DAG‐specific reporter. Consistent plasma‐membrane DAG formation at fertilization, or after injection of physiological concentrations of PLCζ, was barely detectable. However, when PLCζ is overexpressed in eggs, significant plasma‐membrane DAG production occurs in concert with a series of unexpected secondary high‐frequency Ca2+ oscillations. We show that these secondary Ca2+ oscillations can be mimicked in a variety of situations by the stimulation of PKC and that they can be prevented by PKC inhibition. The way PKC leads to secondary Ca2+ oscillations appears to involve Ca2+ influx and the loading of thapsigargin‐sensitive Ca2+ stores. Conclusions. Our results suggest that overproduction of DAG in PLCζ‐injected eggs can lead to PKC‐mediated Ca2+ influx and subsequent overloading of Ca2+ stores. These results suggest that DAG generation in the plasma membrane of fertilizing mouse eggs is minimized since it can perturb egg Ca2+ homoeostasis via excessive Ca2+ influx.  相似文献   

2.
The diacylglycerol (DAG) signal generated from membrane phospholipids by hormone-activated phospholipases is attenuated by mechanisms that include lipolysis or phospholipid resynthesis. To determine whether the DAG signal might also be terminated by incorporation of DAG into triacylglycerol (TAG), we studied the direct formation of TAG from endogenous DAG generated by bacterial phospholipase C (PLC). When Chinese hamster ovary (CHO) cells prelabeled with [(14)C]oleate were treated with PLC from Clostridium perfringens for 6 h, [(14)C]phospholipid decreased 15% and labeled TAG increased 60%. This transfer of (14)C label was even greater when the cells were simultaneously exposed to PLC and 100 microM oleic acid. PLC as well as oleate treatment concomitantly increased the TAG mass within the cell. Moreover, when phospholipids were prelabeled with [(3)H]glycerol, a subsequent increase in [(3)H]TAG indicated that an intact DAG moiety was channeled into the TAG structure. Incubating CHO cells with the diacylglycerol kinase inhibitor R59022 enhanced the formation of TAG from phospholipids hydrolyzed by PLC or by PLC in the presence of 100 microM oleate, but not by incubation with oleate alone, indicating that the DAG released from plasma membrane phospholipids does not require the formation of a phosphatidic acid precursor for TAG synthesis. Similarly, the diacylglycerol lipase inhibitor RHC 80267 did not alter TAG synthesis from plasma membrane DAG, further supporting direct incorporation of DAG into TAG.These studies indicate that DAG derived from plasma membrane phospholipid is largely used for TAG formation, and support the view that this mechanism can terminate DAG signals. The studies also suggest that a transport mechanism exists to move plasma membrane-derived DAG to the endoplasmic reticulum.-Igal, R. A., J. M. Caviglia, I. N. T. de Gómez Dumm, and R. A. Coleman. Diacylglycerol generated in CHO cell plasma membrane by phospholipase C is used for triacylglycerol synthesis. J. Lipid Res. 2001. 42: 88;-95.  相似文献   

3.
Roger C. Hardie   《Cell calcium》2003,33(5-6):385
The light-sensitive current in Drosophila photoreceptors is mediated by transient receptor potential (TRP) channels, at least two members of which (TRP and TRPL) are activated downstream of phospholipase C (PLC) in response to light. Recent evidence is reviewed suggesting that Drosophila TRP channels are activated by one or more lipid products of PLC activity: namely diacylglycerol (DAG), its metabolites (polyunsaturated fatty acids) or the reduction in phosphatidylinositol 4,5-bisphosphate (PIP2). The most compelling evidence for this view comes from analysis of rdgA mutants which are unable to effectively metabolise DAG due to a defect in DAG kinase. The rdgA mutation leads to constitutive activation of both TRP and TRPL channels and dramatically increases sensitivity to light in hypomorphic mutations of PLC and G protein.  相似文献   

4.
Stimulation of various cell surface receptors leads to the production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) through phospholipase C (PLC) activation, and the IP3 and DAG in turn trigger Ca2+ release through IP3 receptors and protein kinase C activation, respectively. The amount of IP(3) produced is particularly critical to determining the spatio-temporally coordinated Ca(2+)-signaling patterns. In this paper, we report a novel signal cross-talk between DAG and the IP3-mediated Ca(2+)-signaling pathway. We found that a DAG derivative, 1-oleoyl-2-acyl-sn-glycerol (OAG), induces Ca2+ oscillation in various types of cells independently of protein kinase C activity and extracellular Ca2+. The OAG-induced Ca2+ oscillation was completely abolished by depletion of Ca2+ stores or inhibition of PLC and IP3 receptors, indicating that OAG stimulates IP3 production through PLC activation and thereby induces IP3-induced Ca2+ release. Furthermore, intracellular accumulation of endogenous DAG by a DAG-lipase inhibitor greatly increased the number of cells responding to agonist stimulation at low doses. These results suggest a novel physiological function of DAG, i.e. amplification of Ca2+ signaling by enhancing IP3 production via its positive feedback effect on PLC activity.  相似文献   

5.
TRP channels in Drosophila photoreceptors: the lipid connection   总被引:2,自引:0,他引:2  
Hardie RC 《Cell calcium》2003,33(5-6):385-393
The light-sensitive current in Drosophila photoreceptors is mediated by transient receptor potential (TRP) channels, at least two members of which (TRP and TRPL) are activated downstream of phospholipase C (PLC) in response to light. Recent evidence is reviewed suggesting that Drosophila TRP channels are activated by one or more lipid products of PLC activity: namely diacylglycerol (DAG), its metabolites (polyunsaturated fatty acids) or the reduction in phosphatidylinositol 4,5-bisphosphate (PIP(2)). The most compelling evidence for this view comes from analysis of rdgA mutants which are unable to effectively metabolise DAG due to a defect in DAG kinase. The rdgA mutation leads to constitutive activation of both TRP and TRPL channels and dramatically increases sensitivity to light in hypomorphic mutations of PLC and G protein.  相似文献   

6.
Phosphatidyl inositol 4,5-bisphosphate (PI 4,5-P2) accumulates in a Rac/Rop-dependent manner in the pollen tube tip plasma membrane, where it may control actin organization and membrane traffic. PI 4,5-P2 is hydrolyzed by phospholipase C (PLC) activity to the signaling molecules inositol 1,4,5-trisphosphate and diacyl glycerol (DAG). To investigate PLC activity during tip growth, we cloned Nt PLC3, specifically expressed in tobacco (Nicotiana tabacum) pollen tubes. Recombinant Nt PLC3 displayed Ca2+-dependent PI 4,5-P2-hydrolyzing activity sensitive to U-73122 and to mutations in the active site. Nt PLC3 overexpression, but not that of inactive mutants, inhibited pollen tube growth. Yellow fluorescent protein (YFP) fused to Nt PLC3, or to its EF and C2 domains, accumulated laterally at the pollen tube tip plasma membrane in a pattern complementary to the distribution of PI 4,5-P2. The DAG marker Cys1:YFP displayed a similar intracellular localization as PI 4,5-P2. Blocking endocytic membrane recycling affected the intracellular distribution of DAG but not of PI 4,5-P2. U-73122 at low micromolar concentrations inhibited and partially depolarized pollen tube growth, caused PI 4,5-P2 spreading at the apex, and abolished DAG membrane accumulation. We show that Nt PLC3 is targeted by its EF and C2 domains to the plasma membrane laterally at the pollen tube tip and that it maintains, together with endocytic membrane recycling, an apical domain enriched in PI 4,5-P2 and DAG required for polar cell growth.  相似文献   

7.
Phospholipid signalling is mediated by phospholipid breakdown products generated by phospholipases. The enzymes from animals and plants generating known or potential lipid-derived second messengers are compared. Plants possess a phospholipase C and a phospholipase A2 both of which are agonist-activated. These agonists (auxin, elicitors, perhaps others) bind to the external surface of the plasma membrane. The target enzyme for potential plant lipid-derived second messengers is lipid-activated protein kinase but the possibility that other enzymes may be also lipid-modulated should not be precluded.Abbreviations DAG diacylglycerol - CDPK calmodulin-like domain protein kinase - PLA2 phospholipase A2 - PLC phospholipase C - PLD phospholipase D - PKC protein kinase C - PS phosphatidylserine  相似文献   

8.
To survive, neurons and other eukaryotic cells must rapidly repair (seal) plasmalemmal damage. Such repair occurs by an accumulation of intracellular vesicles at or near the plasmalemmal disruption. Diacylglycerol (DAG)-dependent and cAMP-dependent proteins are involved in many vesicle trafficking pathways. Although recent studies have implicated the signaling molecule cAMP in sealing, no study has investigated how DAG and DAG-dependent proteins affect sealing. By means of dye exclusion to assess Ca2+-dependent vesicle-mediated sealing of transected neurites of individually identifiable rat hippocampal B104 cells, we now report that, compared to non-treated controls, sealing probabilities and rates are increased by DAG and cAMP analogs that activate PKC and Munc13-1 and PKA. Sealing is decreased by inhibiting DAG-activated novel protein kinase C isozymes ?? (nPKC??) and ?? (nPKC??) and Munc13-1, the PKC effector myristoylated alanine rich PKC substrate (MARCKS) or phospholipase C (PLC). DAG-increased sealing is prevented by inhibiting MARCKS or protein kinase A (PKA). Sealing probability is further decreased by simultaneously inhibiting nPKC??, nPKC??, and PKA. Extracellular Ca2+, DAG, or cAMP analogs do not affect this decrease in sealing. These and other data suggest that DAG increases sealing through MARCKS and that nPKC??, nPKC??, and PKA are all required to seal plasmalemmal damage in B104 and likely all eukaryotic cells.  相似文献   

9.
Although diacylglycerol (DAG) can trigger liposome fusion, biological membrane fusion requires Rab and SNARE proteins. We have investigated whether DAG and phosphoinositide-specific phospholipase C (PLC) have a role in the Rab- and SNARE-dependent homo-typic vacuole fusion in Saccharomyces cerevisiae. Vacuole fusion was blocked when DAG was sequestered by a recombinant C1b domain. DAG underwent ATP-dependent turnover during vacuole fusion, but was replenished by the hydrolysis of phosphatidylinositol 4,5-bisphosphate to DAG by PLC. The PLC inhibitors 3-nitrocoumarin and U73122 blocked vacuole fusion in vitro, whereas their inactive homologues did not. Plc1p is the only known PLC in yeast. Yeast cells lacking the PLC1 gene have many small vacuoles, indicating defects in protein trafficking to the vacuole or vacuole fusion, and purified Plc1p stimulates vacuole fusion. Docking-dependent Ca(2+) efflux is absent in plc1Delta vacuoles and was restored only upon the addition of both Plc1p and the Vam7p SNARE. However, vacuoles purified from plc1Delta strains still retain PLC activity and significant 3-nitrocoumarin- and U73122-sensitive fusion, suggesting that there is another PLC in S. cerevisiae with an important role in vacuole fusion.  相似文献   

10.
ACh stimulates arachidonic acid (AA) release from membrane phospholipids of vascular endothelial cells (ECs). In rabbit aorta, AA is metabolized through the 15-lipoxygenase pathway to form vasodilatory eicosanoids 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and 11,12,15-trihydroxyeicosatrienoic acid (THETA). AA is released from phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by phospholipase A2 (PLA2), or from phosphatidylinositol (PI) by phospholipase C (PLC) pathway. The diacylglycerol (DAG) lipase can convert DAG into 2-arachidonoylglycerol from which free AA can be released by monoacylglycerol (MAG) lipase or fatty acid amidohydrolase (FAAH). We used specific inhibitors to determine the involvement of the PLC pathway in ACh-induced AA release. In rabbit aortic rings precontracted by phenylephrine, ACh induced relaxation in the presence of indomethacin and N(omega)-nitro-L-arginine (L-NNA). These relaxations were blocked by the PLC inhibitor U-73122, DAG lipase inhibitor RHC-80267, and MAG lipase/FAAH inhibitor URB-532. Cultured rabbit aortic ECs were labeled with [14C]AA and stimulated with methacholine (10(-5) M). Free [14C]AA was released by methacholine. Methacholine decreased the [14C]AA content of PI, DAG, and MAG fractions but not PC or PE fractions. Methacholine-induced release of [14C]AA was blocked by U-73122, RHC-80267, and URB-532 but not by U-73343, an inactive analog of U-73122. The data suggested that ACh activates PLC, DAG lipase, and MAG lipase pathway to release AA from membrane lipids. This pathway is important in regulating vasodilatory eicosanoid synthesis and vascular relaxation in rabbit aorta.  相似文献   

11.
Fertilization of mammalian eggs is characterized by a series of Ca2+ oscillations triggered by a phospholipase C activity. These Ca2+ increases and the parallel generation of diacylglycerol (DAG) stimulate protein kinase C (PKC). However, the dynamics of PKC activity have not been directly measured in living eggs. Here, we have monitored the dynamics of PKC‐induced phosphorylation in mouse eggs, alongside Ca2+ oscillations, using fluorescent C‐kinase activity reporter (CKAR) probes. Ca2+ oscillations triggered either by sperm, phospholipase C zeta (PLCζ) or Sr2+ all caused repetitive increases in PKC‐induced phosphorylation, as detected by CKAR in the cytoplasm or plasma membrane. The CKAR responses lasted for several minutes in both the cytoplasm and plasma membrane then returned to baseline values before subsequent Ca2+ transients. High frequency oscillations caused by PLCζ led to an integration of PKC‐induced phosphorylation. The conventional PKC inhibitor, Gö6976, could inhibit CKAR increases in response to thapsigargin or ionomycin, but not the repetitive responses seen at fertilization. Repetitive increases in PKCδ activity were also detected during Ca2+ oscillations using an isoform‐specific δCKAR. However, PKCδ may already be mostly active in unfertilized eggs, since phorbol esters were effective at stimulating δCKAR only after fertilization, and the PKCδ‐specific inhibitor, rottlerin, decreased the CKAR signals in unfertilized eggs. These data show that PKC‐induced phosphorylation outlasts each Ca2+ increase in mouse eggs but that signal integration only occurs at a non‐physiological, high Ca2+ oscillation frequency. The results also suggest that Ca2+‐induced DAG formation on intracellular membranes may stimulate PKC activity oscillations at fertilization. J. Cell. Physiol. 228: 110–119, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
We previously reported the emerging role of CD137–CD137L interaction in inflammation and atherosclerosis. The mechanism of CD137–CD137L interaction may be related to a variety of signaling pathways. The most important signaling pathway involves the activation of phospholipase C(PLC) which induces the diacylglycerol–protein kinase C(DAG–PKC) and the inositol trisphosphate-intracellular free calcium (IP3-[Ca2+]i) pathway. In the current study, we investigated whether CD137–CD137L interaction can stimulate the PLC signaling pathway in human umbilical vein endothelial cells (HUVEC). The diacylglycerol (DAG) and inositol trisphosphate (IP3) levels in HUVEC were measured by radioenzymatic assay. The activity of protein kinase (PKC) was detected by its ability to transfer phosphate from [γ-32P]ATP to lysine-rich histone. The [Ca2+]i concentrations were measured by flow cytometric analysis. The DAG level and PKC activity were increased in a concentration-dependent, biphasic manner in HUVEC induced by anti-CD137. PKC activity was mainly in the cytosol at rest, and then translocated to the membrane when stimulated by anti-CD137. Similarly, rapid IP3 formation induced by anti-CD137 coincided with the peak of the DAG level. Moreover, anti-CD137 induced peak [Ca2+]i responses including the rapid transient phase and the sustained phase. However, anti-CD137L suppressed the activation of the DAG–PKC and IP3-[Ca2+]i signaling pathway, which was stimulated by anti-CD137 in HUVEC. In conclusion, the data suggested that CD137–CD137L interaction induces robust activation of the PLC signaling pathway in HUVEC.  相似文献   

13.
In search of the holy grail for Drosophila TRP   总被引:1,自引:0,他引:1  
Montell C 《Neuron》2008,58(6):825-827
Activation of the archetypal Transient Receptor Potential (TRP) channel, which is essential for Drosophila phototransduction, depends on a phospholipase C (PLC). However, the precise mechanism linking PLC to the gating of TRP has been elusive. In this issue of Neuron, Leung et al. provide compelling evidence that a diacylglycerol (DAG) lipase (INAE), acting downstream of the PLC, is essential for opening TRP. These results strongly support the model that a DAG metabolite is critical for TRP activation and suggest that mammalian DAG lipases may play similar roles.  相似文献   

14.
The previous demonstration that incubation of brain slices with [32P]phosphate brings about rapid tabeling of phosphatidic acid in myelin suggests that the enzyme involved should be present in this specialized membrane. DAG kinase (ATP:1,2-diacyglycerol 3-phosphotransferase, E.C. 2.7.1.107) is present in rat brain homogenate at a specific activity of 2.5 nmol phosphatidic acid formed/min/mg protein, while highly purified myelin had a much lower specific activity (0.29 nmol/min/mg protein). Nevertheless, the enzyme appears to be intrinsic to this membrane since it can not be removed by washing with a variety of detergents or chelating agents, and it could not be accounted for as contamination by another subcellular fraction. Production of endogenous, membrane-associated, diacylglycerol (DAG) by PLC (phospholipase C) treatment brought about translocation from soluble to particulate fractions, including myelin. Another level of control of activity involves inactivation by phosphorylation; a 10 min incubation of brain homogenate with ATP resulted in a large decrease in DAG kinase activity in soluble, particulate and myelin fractions.  相似文献   

15.
Diacylglycerol (DAG) is required for membrane traffic and structural organization at the Golgi. DAG is a lipid metabolite of several enzymatic reactions present at this organelle, but the mechanisms by which they are regulated are still unknown. Here, we show that cargo arrival at the Golgi increases the recruitment of the DAG‐sensing constructs C1‐PKCθ‐GFP and the PKD‐wt‐GFP. The recruitment of both constructs was reduced by PLCγ1 silencing. Post‐Golgi trafficking of transmembrane and soluble proteins was impaired in PLCγ1‐silenced cells. Under basal conditions, PLCγ1 contributed to the maintenance of the pool of DAG associated with the Golgi and to the structural organization of the organelle. Finally, we show that cytosolic phospholipase C (PLC) can hydrolyse phosphatidylinositol 4‐phosphate in isolated Golgi membranes. Our results indicate that PLCγ1 is part of the molecular mechanism that couples cargo arrival at the Golgi with DAG production to co‐ordinate the formation of transport carriers for post‐Golgi traffic.   相似文献   

16.

Background:  

Phosphatidylinositol 4,5-bisphosphate (PIP2) is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC) have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn induces calcium (Ca2+) release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM). In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated.  相似文献   

17.
Receptor-initiated phospholipase C activation and generation of IP(3) and DAG are important common triggers for a diversity of signal transduction processes in many cell types. Contributing to this diversity is the existence and differential cellular and subcellular distribution of distinct phospholipase C isoforms with distinct regulatory properties. The recently identified PLCε enzyme is an isoform that is uniquely regulated by multiple upstream signals including ras-family GTP binding proteins as well as heterotrimeric G-proteins. In this review we will consider the well documented biochemical regulation of this isoform in the context of cell and whole animal physiology and in the context of other G protein-regulated PLC isoforms. These studies together reveal a surprisingly wide range of unexpected functions for PLCε in cellular signaling, physiology and disease.  相似文献   

18.
In the last decade a great deal of attention was awarded to a signal transduction pathway which is utilized primarily by Ca2+ mobilizing signal molecules and which involves the hydrolysis of a quantitatively minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by a PtdIns-specific phospholipase C (PLC). The evidence for the existence of receptor-mediated GTP binding protein-coupled PLC in myocardium and its possible functions are briefly summarized. The minireview is concentrated on the following aspects: 1) cellular localization and synthesis of polyphospho-PtdIns from PtdIns, 2) desensitization of the 1-adrenergic agonist and endothelin-1 mediated PtdIns responses, 3) oscillatory Ca2+ transients initiated by Ptdlns(4,5)P2 hydrolysis, 4) polyunsaturated fatty acids as constituents of polyphospho-PtdIns and of the protein kinase C activator 1,2-diacylglycerol (DAG), 5) source other than Ptdlns(4,5)P2 contributing to the stimulated DAG, 6) role of the PtdIns pathway in cardiomyocyte growth and gene expression during the hypertrophic response. (Mol Cell Biochem116: 59–67, 1992)Abbreviations Phosphatidylinositol 4,5-bisphosphate PtdIns(4,5)P2 - Phosphatidylinositol 4-monophosphate PtdIns(4)P4 - Phosphatidylinositol PtdIns - Inositol 1,4,5-triphosphate Ins(1,4,5)P3 - Inositol 1,3,4,5-tetrakisphosphate Ins(1,3,4,5)P4 - Inositol 1-monophosphate Ins(1)P - Inositol 1,4-bisphosphate Ins(1,4)P2 - Inositol Ins - Inositolphosphates InsPn - Guanine 5'-triphosphate GTP - GTP binding protein G-protein - Phosphatidylinositolspecific phospholipase C PLC - Protein kinase C PKC - 1,2-Diacylglycerol DAG - Monoacylglycerol MAG - cytidyldiphoshate-diacylglycerol CDP-DAG - Sarcolemma SL - Sarcoplasmic reticulum SR - Stearic acid 18:0 - Polyunsaturated fatty acids PUFA - Arachidonic acid 20:4n-6 - Linoleic acid 18:2n-6 - Eicosapentaenoic acid 20:5n-3 - Docosahexaenoic acid 22:6n-3 - Phosphatidic acid PtdOH - Phospholipase D PLD - Phosphatidylcholine PtdChol  相似文献   

19.
In mouse neuroblastoma N18TG2 cells prelabeled with [3H]arachidonic acid ([3H]AA) the biosynthesis of 2-arachidonoylglycerol (2-AG) is induced by ionomycin in a fashion sensitive to an inhibitor of diacylglycerol (DAG) lipase, RHC 80267, but not to four different phospholipase C (PLC) blockers. Pulse experiments with [3H]AA showed that ionomycin stimulation leads to the sequential formation of [3H]phosphatidic acid ([3H]PA), [3H]DAG, and [3H]2-AG. [3H]2-AG biosynthesis in N18TG2 cells prelabeled with [3H]AA was counteracted by propranolol and N-ethylmaleimide, two inhibitors of the Mg2+/Ca2(+)-dependent brain PA phosphohydrolase. Pretreatment of cells with exogenous phospholipase D (PLD) led to a strong potentiation of ionomycin-induced [3H]2-AG formation. These data indicate that DAG precursors for 2-AG in intact N18TG2 cells are obtained from the hydrolysis of PA and not through the activation of PLC. The presence of 2% ethanol during ionomycin stimulation failed to elicit the synthesis of [3H]phosphatidylethanol and did not counteract the formation of [3H]PA, thus arguing against the activation of PLD by the Ca2+ ionophore. Selective inhibitors of secretory phospholipase A2 and the acyl-CoA acylase inhibitor thimerosal significantly reduced [3H]2-AG biosynthesis. The implications of these latter findings, and of the PA-dependent pathways of 2-AG formation described here, are discussed.  相似文献   

20.
In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号