首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polysaccharide preparation, isolated from egg masses deposited by snails of an Ampullarius species, was purified via precipitation with Cetavlon in the presence of sodium borate, and found to contain d-galactose and a smaller proportion of d-glucose, and to have two components with sedimentation coefficients of 10S and 40S. A polysaccharide, isolated from freshly laid egg masses, was highly branched and was shown to contain nonreducing α-d-glucopyranosyl and β-d-galactopyranosyl end-groups, and 3,6-di-O-substituted β-d-galactopyranosyl residues. One or more of the polysaccharide components was a d-glucopyrano-d-galactopyranan with non-reducing α-d-glucopyranosyl end-groups (1→4)-linked to β-d-galactopyranosyl residues. The polysaccharide preparations, obtained from freshly laid egg masses and from those that were left for 10 and 15 days after being laid, were structurally different from each other. With the passage of time, progressive diminution of the 10S component and the proportion of d-glucose in the polysaccharide took place, suggesting that each constituent was consumed preferentially by the snail embryos as an energy source.  相似文献   

2.
Experiments were conducted to determine whether symbiotic bacteroids of Bradyrhizobium japonicum produce exopolysaccharide within soybean (Glycine max [L.] Merr. cv `Lee 74') nodules. B. japonicum strains RT2, a derivative of USDA 110 with resistance to streptomycin and rifampicin, and RT176-1, a mutant deficient in exopolysaccharide synthesis, were used. Although aerobically cultured RT2 produced 1550 micrograms of exopolysaccharide per 1010 cells, root nodules formed by RT2 contained only 55.7 micrograms of polysaccharide per 1010 bacteroids, indicating that little exopolysaccharide synthesis occurred within the nodules. The polysaccharide level of RT2 nodules was about equal to that of nodules containing the exopolysaccharide mutant RT176-1 (61.0 micrograms per 1010 bacteroids). Gas chromatographic analysis showed that the sugar composition of polysaccharide from nodules of RT2 or RT176-1 was almost the same as that of polysaccharide from unnodulated root tissue, but differed strikingly from that of rhizobial exopolysaccharide from aerobic cultures. Thus, the host plant and not the bacteroids was probably the source of most or all of the polysaccharide in the nodule extracts. Also, bacteroids from nodules failed to bind soybean lectin, confirming the absence of an exopolysaccharide capsule.  相似文献   

3.
The reserve polysaccharide of the endosperm of Carum carvi consists of more than 90% mannose and was characterized as a β(1–4)-mannan. Total or partial acid hydrolysis, enzymatic breakdown or acetolysis of either palm or Carum carvi mannan yielded the same mono- and oligosaccharides, indicating a similar chemical structure of the two reserve polysaccharides. However, Carum carvi contains only traces of the alkali soluble mannan A dominant in the palm endosperm polysaccharide.  相似文献   

4.
Bush JW  Markovitz A 《Genetics》1973,74(2):215-225
CapR mutants of E. coli K-12 overproduce capsular polysaccharide (mucoid phenotype) and enzymes involved in capsular polysaccharide synthesis, and they are sensitive to radiation. It has been uncertain whether both properties are mediated by damage to a single cistron or by a polar effect on a second cistron in the same operon. Introduction of a polarity suppressor caused no change in the overproduction of polysaccharide, in the enzymes of polysaccharide synthesis or in radiation sensitivity of the capR mutant. Thus mucoidy and radiation sensitivity resulting from capR (lon) mutations are both the consequences of impairment of the same cistron. The experiments demonstrate the advantage of the use of polarity suppressors (over conventional nonsense suppressors) in determining whether pleiotropic effects of a mutation are the result of polarity.  相似文献   

5.
The pneumococcal serotype 14 polysaccharide was produced in Lactococcus lactis by coexpressing pneumococcal polysaccharide type 14-specific genes (cpsFGHIJKL14) with the lactococcal regulatory and priming glucosyltransferase-encoding genes specific for B40 polysaccharide (epsABCDB40). The polysaccharide produced by Lactococcus was secreted in the medium, simplifying downstream processing and polysaccharide isolation from culture broth.  相似文献   

6.
Kato Y  Nevins DJ 《Plant physiology》1989,89(3):792-797
A pectic fraction, accounting for about 0.3% of the total cell wall polysaccharide, was derived from the hot water extract of an insoluble fraction of the buffer-homogenate of Zea shoots. The pectic polysaccharide fraction was characterized by fragmentation analysis after hydrolysis with acid and Erwinia carotovora pectate lyase. The results suggest that the fraction consists of mostly a linear homopolygalacturonan with neutral sugar components or a homogalacturonan and a rhamnogalacturonan with neutral sugar components.  相似文献   

7.
Yang Y  Steup M 《Plant physiology》1990,94(3):960-969
From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction with the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by 14C-labeling experiments in which the glucosyl transfer from [14C]glucose 1-phosphate to the polysaccharide preparation was monitored.  相似文献   

8.
Employing a combination of chemical and spectroscopic techniques, the structure of the Haemophilus influenzae type d capsular polysaccharide was found to be →4)-β-d-GlcNAc-(1→3)-β-d-ManNAcA-(1→. l-Alanine, l-serine, and l-threonine, in the molar ratios of ~1.0:1.0:0.3, were linked to C-6 of the d-mannosyluronic residue as amides; the (serine + alanine + threonine) to ManNAcA ratio was ~0.95:1.0. Removal of the amino acids by mild hydrolysis with sodium hydroxide resulted in a material that was cross-reactive with the native, type d polymer. The base-treated, type d polysaccharide was not observed to cross-react with either the H. influenzae type e or Escherichia coli K7 capsular polysaccharide, both of which are structurally similar to type d.  相似文献   

9.
A polysaccharide was isolated from marine green algae Monostroma latissimum, and its chemical characteristic and anticoagulant activity were investigated. The results demonstrated that the polysaccharide was high rhamnose-containing sulfated polysaccharide, and was mainly composed of 1,2-linked l-rhamnose residues with sulfate groups substituted at positions C-3 and/or C-4. The sulfated polysaccharide exhibited high anticoagulant activities by assays of the activated partial thromboplastin time (APTT) and thrombin time (TT). The anticoagulant property of the sulfated polysaccharide was mainly attributed to powerful potentiation thrombin by heparin cofactor II.  相似文献   

10.
Treatment of the O-specific polysaccharide from Shigella dysenteriae Type 3 with hydrazine in the presence of hydrazine sulphate resulted in quantitative N-deacetylation with the formation of a modified polysaccharide containing free amino groups. Oxidation of the modified polysaccharide with periodate did not destroy the 2-amino-2-deoxygalactose residues, thus indicating that they were substituted at position 3. Acid hydrolysis of the modified polysaccharide afforded 3-O-(2-amino-2-deoxy-β-D-galactopyranosyl)-D-galactose, which was identified as the N-acetyl derivative. Deamination of the modified polysaccharide with nitrous acid cleaved the 2-amino-2-deoxy-D-galactopyranosyl linkages to give a pentasaccharide as the major product, which appeared to be the modified chemical repeating unit of the O-specific polysaccharide.  相似文献   

11.
Certain strains of Bradyrhizobium japonicum produce large quantities of polysaccharide in soybean (Glycine max (L.) Merr.) nodules, and nodule polysaccharide (NPS) is different from that produced in culture. A previous survey of field-grown plants showed highly variable levels of NPS among field sites. To obtain clues about the possible function of NPS, we conducted two additional surveys of field-grown plants. The amount of polysaccharide in bulk samples of nodules was not associated with soil type, texture, slope, drainage, or any of the measured soil chemical properties except pH and [Ca]. Correlations with pH and [Ca] were positive and highly significant for two independent surveys involving a total of 77 sites in two years. In a preliminary comparison of high and low levels of Ca supplied to soybean plants grown in silica sand in a greenhouse, a high level of Ca (200 mg of Ca liter-1) increased the NPS level and increased the Ca content of the polysaccharide fraction. B. japonicum isolates from 450 nodules collected at 10 field sites in 1993 were used to form nodules on soybean plants grown in sand culture in a greenhouse in order to examine bacterial phenotype under controlled conditions. Results showed that the NPS level in the bulk nodule sample from any given site was a function of the proportion of nodule occupants that were capable of NPS synthesis. Thus, a higher soil pH and/or [Ca] may positively influence the survival of B. japonicum capable of synthesis of the nodule-specific polysaccharide.  相似文献   

12.
Planktonic Oscillatoria spp. often inhabit depths of thermally stratified lakes in which gradients of physical and chemical factors occur. Measurements of photosynthetic rate or photosynthetic carbon metabolism were used to evaluate the importance of vertical gradients of temperature, oxygen, and pH upon Oscillatoria rubescens in Crooked Lake, Ind. At the low light intensities experienced in situ, neither photosynthetic rate nor relative incorporation of carbon dioxide into low-molecular-weight compounds, polysaccharide, or protein was affected by temperature. At a 10-fold-higher light intensity, the photosynthetic rate increased as temperature increased; most of the additional carbon accumulated as polysaccharide. Polysaccharide which was synthesized at high light intensity and temperature was respired when the organisms were placed in the dark, but was not used for protein biosynthesis. When O. rubescens was shifted from high light to low light, a fraction of the polysaccharide was metabolized into protein. Adaptation to growth at lower temperatures by O. rubescens cultures resulted in a decrease in the maximum photosynthetic rate. Oxygen inhibited photosynthesis by only 10 to 15% at concentrations typically found in the lake. The photosynthetic rates at pH values which occurred in Crooked Lake were all near the maximum. Thus, gradients of temperature, oxygen, or pH are not likely to significantly affect the distribution of O. rubescens in Crooked Lake, given the low light intensity at which O. rubescens grows and the range of values for those factors in the lake.  相似文献   

13.
Syntheses of 3- and 4-O-β-D-galactopyranosyl-L-rhamnose and of 3-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-L-rhamnose are described. Comparison of the inhibitory powers of these three disaccharides with those of a selection of other disaccharides on the precipitin reaction between Type VII antipneumococcal horse serum and Type VII pneumococcal polysaccharide or Tamarind A polysaccharide showed that O-D-galactosyl- and O-(2-acetamido-2-deoxy-D-glucosyl)-L-rhamnose groups are important serological determinants in the pneumococcal Type VII polysaccharide.  相似文献   

14.
The aim of this study was to investigate the inhibitory effect of Sargassum polysaccharide on oxidative stress induced by infectious bursa disease virus (IBDV) in chicken bursal lymphocytes. The levels of IL-1β, IL-8, IL-10, TNF-α, MCP-1, reduced glutathione and reactive oxygen species in chicken bursal lymphocytes treated with IBDV or both IBDV and Sargassum polysaccharide were measured, and the activities of superoxide dimutase and glutathione peroxidase were evaluated. Our results showed that oxidative stress appeared when chicken bursal lymphocytes were incubated with IBDV for 8 h at 100 TCID50. Sargassum polysaccharide inhibited oxidative stress by increasing the amount of reduced glutathione, promoting the activities of superoxide dimutase and glutathione peroxidase and reducing the level of reactive oxygen species. The polysaccharide also raised IL-1β, IL-8, IL-10 and TNF-α levels in cells infected with IBDV. These findings suggest that Sargassum polysaccharide acts against infection by elevating antioxidant capacity and cytokine levels in chicken bursal lymphocytes.  相似文献   

15.
Porphyridium cultures grown on either nitrate or ammonium as the nitrogen source showed similar patterns of growth and cell wall polysaccharide production. The effect of nitrogen on growth and cell wall polysaccharide production was studied by applying three regimens of supply: batch mode, in which nitrate was supplied at the beginning of the experiment and became depleted at day 6; continual mode, in which nitrate was added daily; and deficient mode, in which the cells were cultured in a nitrate-free medium. Growth was similar in the batch- and continual-mode cultures, whereas it was totally inhibited in the deficient-mode culture. Polysaccharide content (per volume) was highest in the batch-mode culture and lowest in the deficient-mode culture. However, polysaccharide production per cell was similar in the continual- and deficient-mode cultures, the highest value being found in the batch-mode culture. In addition to its effect on polysaccharide content, nitrogen affected the polysaccharide distribution between soluble and bound polysaccharides. In the deficientmode culture, most of the cell wall polysaccharide was dissolved in the medium.  相似文献   

16.
The capsular polysaccharide from klebsiella type 61 was found to contain d-galactose, d-glucose, d-mannose, and d-glucuronic acid in the ratios 1:2:1:1. Acid hydrolysis of the polysaccharide gave one aldobiouronic acid, whose structure was established. Methylation analysis of the polysaccharide provided information about the linkages in the polysaccharide. The polysaccharide is composed of a pentasaccharide repeating unit for which structures are proposed.  相似文献   

17.
The interaction between the acidic exopolysaccharides produced by two Bradyrhizobium strains and several metal cations has been studied. Aqueous solutions in the millimolar range of Fe3+ but not of Fe2+ precipitated the exopolysaccharides from Bradyrhizobium (Chamaecytisus) strain BGA-1 and, to a lesser extent, Bradyrhizobium japonicum USDA 110. The precipitation was pH dependent, with a maximum around pH 3. The precipitate was redissolved by changing the pH and by Fe3+ reduction or chelation. Deacetylation of B. japonicum polysaccharide increased its precipitation by Fe3+. At pH near neutrality, the polysaccharide from Bradyrhizobium (Chamaecytisus) strain BGA-1 stabilized Fe3+ solutions, despite the insolubility of Fe(OH)3. Aluminum precipitated Bradyrhizobium (Chamaecytisus) polysaccharide but not the polysaccharide produced by B. japonicum. The precipitation showed a maximum at about pH 4.8, and the precipitate was redissolved after Al3+ chelation with EDTA. Precipitation was inhibited by increases in the ionic strength over 10 mM. Bradyrhizobium (Chamaecytisus) polysaccharide was also precipitated by Th4+, Sn2+, Mn2+, and Co2+. The presence of Fe3+ increased the exopolysaccharide precipitation by aluminum. No precipitation, gelation, or increase in turbidity of polysaccharide solutions occurred when K+, Na+, Ca2+, Mg2+, Cu2+, Cd2+, Pb2+, Zn2+, Hg2+, or U6+ was added at several pH values. The results suggest that the precipitation is based on the interaction between carboxylate groups from different polysaccharide chains and the partially hydrolyzed aquoions of Fe3+, Al3+, Th4+, and Sn2+.  相似文献   

18.
The aim of this study was to investigate the preventive effect of Agrocybe chaxingu polysaccharide on streptozocin (STZ)-induced pancreatic β-cells destruction. Agrocybe chaxingu polysaccharide markedly reduced nitric oxide (NO) production and iNOS expression levels in RINm5F cells in a dose-dependent manner. In addition, Agrocybe chaxingu polysaccharide significantly inhibited iNOS expression and blood glucose levels in STZ-induced diabetic mice. Moreover, immunohistochemical analysis revealed that it enhanced pancreatic β-cells resistance to destruction by STZ. These results suggest that Agrocybe chaxingu polysaccharide may have value as a therapeutic agent against diabetes mellitus.  相似文献   

19.
Extraction of the pulp of ripe berries of Bryonia lacinosa with 1% aqueous acetic acid yielded a polysaccharide material, having d-glucose, d-mannose and l-arabinose in the molar ratio of. 5.00:3.01:4.00. Hydrolysis of the fully methylated polysaccharide furnished 2,3,4,6-tetra-O-methyl-d-glucose, 2,3-di-O-methyl-d-glucose, 2,3,6-tri-O-methyl-d-mannose, 2,3-di-O-methyl-d-mannose and 2,3,5,-tri-O-methyl-l-arabinose in 1:4:2:1:4 molar ratio. Partial hydrolysis of the polysaccharide furnished; mannobiose, epicellobiose, 6-O-β-l-arabinofuranosyl-d-glucose, 6-O-α-mannopyranosyl-d-mannose and epimaltose along with the component monosaccharides. On metaperiodate oxidation studies, 100 g of the polysaccharide liberated 0.055 mol of HCOOH consuming 0.7127 mol of periodate, indicating about 8.33% of the end groups. On the basis of the above results, a structure for the repeating unit of the polysaccharide has been proposed. The polysaccharide was tested for the microbial activity and was found to be active against Escherichia coli with a minimum dose of 6.25 mg/mL.  相似文献   

20.
The heavily encapsulated Acinetobacter calcoaceticus BD4 and the “miniencapsulated” single-step mutant A. calcoaceticus BD413 produced extracellular polysaccharides in addition to the capsular material. The molar ratio of rhamnose to glucose (3:1) in the extracellular BD413 polysaccharide fraction was similar to the composition of the capsular material. In both strains, the increase in capsular polysaccharide was parallel to cell growth and remained constant in stationary phase. The extracellular polysaccharides were detected starting from mid-logarithmic phase and continued to accumulate in the growth medium for 5 to 8 h after the onset of stationary phase. Strain BD413 produced one-fourth the total rhamnose exopolysaccharide per cell that strain BD4 did. Depending on the growth medium, 32 to 63% of the rhamnose polysaccharide produced by strain BD413 was extracellular, whereas in strain BD4 only 7 to 14% was extracellular. In all cases, strain BD413 produced more extracellular rhamnose polysaccharide than strain BD4 did. In glucose medium, strain BD413 also produced approximately 10 times more extracellular emulsifying activity than strain BD4 did. The isolated capsular polysaccharide obtained after shearing of BD4 cells showed no emulsifying activity. Thus, strain BD413 either produces a modified extracellular polysaccharide or excretes an additional substance(s) that is responsible for the emulsifying activity. Emulsions induced by the ammonium sulfate-precipitated BD413 extracellular emulsifier require the presence of magnesium ion and a mixture of an aliphatic and an aromatic hydrocarbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号