首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Life sciences》1994,54(24):PL451-PL456
We investigated the involvement of α1-adrenoceptor subtypes in the positive chronotropic response to norepinephrine (NE) in neonatal rat cardiac myocytes at day 3 of culture. The cardiac myocytes at day 3 of culture exhibited a dose-dependent positive chronotropic response to NE in the presence of propranolol, a β-adrenoceptor antagonist. The positive chronotropic responses to NE were completely antagonized by the α1-adrenoceptor antagonist prazosin. The NE-induced positive chronotropic response was inhibited 68% by the α1B-adrenoceptor antagonist, chloroethylclonidine (CEC), but partially (41%) so by the α1A-adrenoceptor antagonist, WB4101. In the membrane fraction derived from cardiac myocytes at day 3 of culture, pretreatment with CEC decreased the Bmax of the α1-adrenoceptor to 22% of the control value. The NE-induced positive chronotropic response was inhibited 62 and 77% by the voltage-gated Ca2+ channel blocker such as nifedipine and verapamil, respectively. These findings indicate (1) that cultured neonatal rat cardiac myocytes possess both α1-adrenoceptor subtypes, i.e., α1A and α1B, (2) that the predominant α1-adrenoceptor subtypes mediating NE-induced positive chronotropy in neonatal rat cardiac myocytes at day 3 of culture are α1B-subtypes, and (3) that NE-induced positive chronotropy may be caused via voltage-gated Ca2+ channel activation.  相似文献   

2.
《Life sciences》1993,53(25):PL411-PL416
We investigated the contribution of α1-adrenoceptor subtypes to the chronotropic response to norepinephrine (NE) in cultured neonatal rat cardiac myocytes under normoxia and hypoxia. A dose-dependent negative chronotropic response was induced by NE in the presence of propranolol. Hypoxic exposure inverted the negative chronotropic response to NE to a positive one. All of these chronotropic responses were completely antagonized by prazosin. In normoxic conditions, the NE-induced negative chronotropic response was completely antagonized by WB4101 but only partially (55%) so by chloroethylclonidine (CEC). After hypoxic exposure, WB4101 partially antagonized the positive chronotropic response to NE (54%), while CEC completely suppressed the action of NE. Hypoxic exposure did not alter the number of α1A - and α1B-adrenoceptor subtypes as measured by [3H]prazosin binding following CEC treatment. These results indicate (1) that cultured neonatal rat cardiac myocytes contain both α1-adrenoceptor subtypes, i.e., α1A and α1B, and (2) that the predominant α1-adrenoceptor subtypes mediating NE-induced chronotropy were altered by hypoxia.  相似文献   

3.
The effects of culture and membrane potential on Go39 expression were examined in neonatal rat cardiac myocytes. During six days of culture, the amount of Go39 in myocytes increased six-fold. The increase in Go39 appeared to be programmed, since Go39 of rat hearts also increased in vivo within three days after birth before declining by six days after birth. Furthermore, the age of the rat from which cardiac myocytes were isolated determined the amount of Go39 that accumulated in cultured cells with myocytes from two day-old rats producing more Go39 than myocytes from six day-old rats. In addition, agents which alter membrane potential (KCl and bupivacaine) inhibited the accumulation of Go39 in cultured myocytes. In an attempt to identify the signaling pathway in which cardiac Go39 is involved, muscarinic receptor-stimulated inositol phosphate production was examined, but was found to be comparable in myocytes that had six-fold differences in Go39 content. Thus Go39 does not appear to couple muscarinic receptors to phospholipase C in rat cardiac myocytes.  相似文献   

4.
In the present study, we investigated the effect of hypoxia on the chronotropic response to norepinephrine (NE) of cultured neonatal rat ventricular myocytes. We measured beating of myocytes with the Fotonic sensorTM, using a newly developed method for a noncontact displacement measurement. The beating rate counted with the sensor had a high correlation coefficient with that counted visually under a microscope (r = 0.997, P < 0.01). NE concentrations of 10−8–10−4 M caused negative chronotropy dose dependently in the presence of 5×10−7 M propranolol. NE-induced chronotropy was completely antagonized by 10−6 M prazosin. Three hours hypoxia decreased the spontaneous beating rate 40% (P < 0.01). Negative chronotropy induced by 10−4 M NE in normoxia was inverted to positive and was antagonized by prazosin. Hypoxia increased the basal level of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) to 190% (P < 0.01), while NE-stimulated Ins(1,4,5)P3 production was significantly suppressed. Immunoblotting analysis of G protein subunits demonstrated no quantitative changes in Giα, Gqα, Goα and Gβcommon subunits in hypoxia. In a saturation binding assay with [3H]prazosin, Kd values were increased to 152% by hypoxia (P < 0.05) without significant change in Bmax. Basal activity of low Km-GTPase was increased to 122% by hypoxia (P < 0.05). These results suggest that the hypoxia-induced increase in low-Km GTPase activity, which could stimulate phospholipase C by an activated αGTP subunit of G protein and consequently induce receptor-independent increase in Ins(1,4,5)P3, may be responsible for the inversion of the NE-induced negative chronotropic response in normoxia.  相似文献   

5.
The localization of the ai adrenoceptors (1-AR) in the heart tissues from rat and human and in the cultured heart cells from neonatal rats was studied by indirect immunofluorescence and postembedding electronmicroscopical immuno-gold technique. With antipeptide antibodies directed against the second extracellular loop of the human 1-AR (AS sequence 192–218), this receptor was found to be localized along the sarcolemma in both human and rat hearts. Similar localization sites were detected in cultivated rat neonatal cardiomyocytes. Beside the localization in cardiomyocytes, 1-AR were identified in endothelial cells of capillaries and smooth muscle cells of coronary vessels, in neuronal endings, in mast cells of cultivated heart cells but not, or in less amount in fibroblasts. Interestingly, in the right atrium of rat heart the localization of 1-AR was found to be near or on atrial natriuretic factor (ANF) granules, providing the basis for the -adrenergic influence on ANF release. The immunocytochemical studies further confirm and complete the findings known by using autoradiographic binding studies with specific ligands.  相似文献   

6.
7.
The alterations of cardiac and lymphocyte β-adrenoceptors were observed in the rats with chronic heart failure produced by constriction of both abdominal aorta and renal artery. The results showed that β1-adrenocep-tor density and mRNA levels were increased, whereas these levels remained unchanged for β2 The concentration-contractile response curve for isoproterenol was shifted to the right in cardiac atrium, whereas the concentration-cAMP accumulation response curve for isoproterenol in myocardium was not changed. The number of β-adrenoceptors in blood lymphocyte was markedly reduced. Thus in the heart-failure rats the density of cardiac β-adrenoceptor was increased accompanying reduced β-adrenoceptor-mediated positive inotropic response, suggesting a post adenylate cyclase dys-function or impaired contractile components. In contrast, the alteration of β-adrenoceptor in lymphocyte is consistent with the reduced β-adrenoceptor-mediated inotropic response in heart.  相似文献   

8.
《Life sciences》1996,59(14):PL221-PL226
α1-and β-adrenergic and muscarinic-cholinergic regulation in spontaneous beating and Ca2+ oscillations in neonatal rat cardiac myocytes at day 6 of culture was investigated. The spontaneous beating in myocytes decreased in the presence of 10 μM norepinephrine (NE). This negative chronotropic action was antagonized by prazosin. Carbachol (CCh) also showed negative chronotropic action which was inhibited by atropine. On the other hand, isoproterenol (ISP) increased the beating rate which was antagonized by propranolol. NE increased inositol phosphate formation whereas CCh and ISP did not. NE and CCh suppressed the frequency of the spontaneous Ca2+ oscillations but ISP increased. The present results suggest that α1-adrenergic and muscarinic receptors regulate chronotropism to be negative whereas β-adrenoceptor regulates chronotropism to be positive in cultured neonatal rat cardiac myocytes.  相似文献   

9.
10.
Nuclear localization leucine-rich-repeat protein 1 (NLRP1) is a member of Nod-like receptors (NLRs) family. Recent studies have reported that NLRP1 is involved in various diseases, especially in cardiovascular diseases. However, the effect of NLRP1 on cardiac fibrosis remains unclear. In this study, NLRP1 overexpression and NLRP1 silencing constructs were transfected into neonatal rat cardiac fibroblasts induced by TGF-β1 for 48 h to investigate the effect of NLRP1 in cardiac fibrosis and its molecular mechanisms. Cardiac fibroblasts were transfected with NLRP1 and then cultured in the presence and absence of TGF-β1and Smad3 inhibitor (SIS3). Our data indicated that NLRP1 not only promoted fibroblast activation and myofibroblast differentiation, but also upregulated the mRNA and protein levels of α-SMA in the TGF-β1-treated neonatal rat cardiac fibroblasts. Overexpressing NLRP1 in TGF-β1-induced cardiac fibroblasts upregulated the mRNA and protein levels of Collagen I, Collagen III, and connective tissue growth factor. Moreover, NLRP1 upregulated the protein levels of Smad2, Smad3, and Smad4 in nuclei of fibroblasts, and attenuated levels of phosphorylated Smad2 and Smad3 in the cytoplasm of fibroblasts induced by TGF-β1. In addition, the increase in fibrotic genes and Smad proteins was significantly reduced in the presence of SIS3. Our findings illustrated that NLRP1 promoted myofibroblast differentiation and excessive ECM production in TGF-β1-induced neonatal cardiac fibroblasts through directly targeting TGF-β1/Smad signaling pathways.  相似文献   

11.
Conventional models of G-protein coupled receptor (GPCR) signaling describe cell surface receptors binding to external ligands, such as hormones or circulating peptides, to induce intracellular signaling and a physiologic response. However, recent studies identify new paradigms indicating that GPCRs localize to and signal at the nucleus and that GPCR oligomers can influence receptor function. Previously, we reported that endogenous α1-adrenergic receptors (α1-ARs) localize to and signal at the nuclei in adult cardiac myocytes. In this study, we examined the mechanisms behind α1-AR nuclear localization and how nuclear localization impacted receptor function. We verified that endogenous α1-ARs localized to the nuclear membrane of intact nuclei isolated from wild-type adult cardiac myocytes. Next, we identified and disrupted putative nuclear localization sequences in both the α1A- and α1B-adrenergic receptors, which led to mis-localization of α1-ARs in cultured adult cardiac myocytes. Using these mutants, we demonstrated that nuclear localization was required for α1-signaling in adult cardiac myocytes. We also found that the nuclear export inhibitor leptomycin B inhibited α1-AR signaling, indicating α1-AR signaling must arise in the nucleus in adult cardiac myocytes. Finally, we found that co-localization of the α1-subtypes at the nuclei in adult cardiac myocytes facilitated the formation of receptor oligomers that could affect receptor signaling. In summary, our data indicate that α1-AR nuclear localization can drive the formation of receptor oligomers and regulate signaling in adult cardiac myocytes.  相似文献   

12.
Beta-catenin is not only an adhering junction protein, but also the central player of the canonical Wnt signalling pathway. In order to investigate the roles of β-catenin in the mechanism of myocardial hypertrophy, we determined the expression and distribution of β-catenin in the cardiomyocytes of spontaneously hypertensive heart failure (SHHF) rats and age-matched Wistar-Kyoto (WKY) rats. We identified the reducing of β-catenin expression in the membrane protein fraction but increasing in the nuclear protein in the 6 and 12 month-old SHHF rats as compared with the age-matched WKY rats by Western blotting. Immunolabeling of β-catenin colocalized with cadherin at the intercalated disc sites and showed nuclear accumulation in myocytes of SHHF rats. We also revealed that the association between glycogen synthase kinase-3β and β-catenin had weakened in the 6 month-old SHHF rats as compared with the age-matched WKY rats by immunoprecipitation. These findings suggested that nuclear translocation of β-catenin might play important roles in regulating signal transduction in the decompensated hypertrophy stage.  相似文献   

13.
High-affinity receptors for α2-macroglobulin-trypsin complex were demonstrated in rat hepatocytes at 4°C. The dissociation rate constant for the labelled complex was very small at low receptor occupancies, approx. 4·10−4 min−1. Dissociation was biphasic at high receptor occupancies with a rate constant for the rapid phase of about 2·10−2 min−1. At near-equilibrium, half of the receptors were saturated at a complex concentration of 150 pM, and the Scatchard plot was concave upwards. Thus, the binding shows complex kinetics with the probable involvement of negative cooperativity. Binding of the labelled complex was not influenced by galactose, mannose, mannose phosphate or fucoidin, whereas it was abolished in the absence of extracellular Ca2+ and inhibited by bacitracin. Approx. 70% of the labelled complex bound at 4°C was rapidly internalized (kint about 3·10−1 min−1) after being warmed to 37°C. Radioactivity released from the cells at 37°C comprised intact labelled complex and iodide. The complex was initially released at a rapid rate (k−1 about 1·10−1 min−1) from about 25% of the cell-bound pool. This probably represents dissociation from the receptors. A slow phase of release followed, so that half of the bound pool was finally released as intact complex. Iodide release followed a sigmoidal curve after a 20 min lag period. Thus, specific high-affinity receptors mediate the internalization and eventual degradation of α2-macroglobulin-proteinase complex into hepatocytes.  相似文献   

14.
Summary Modulation of β-adrenergic receptors and their ability to respond to β-receptor stimulation was studied in cultures of adult and neonatal rat cardiac myocytes. The radioligand iodocyanopindolol (125I-CYP) was used to identify β-adrenoceptors on the intact cells.125I-CYP was found to bind to the receptors in a stereospecific and saturable manner. Freshly isolated neonatal and adult myocytes both had a receptor density of approximately 50 fmol/mg protein. The number of β-receptors per milligram protein was similar during a 10-d culture period for adult myocytes but increased after a 5-d culture period for neonatal myocytes. Both cell types responded to β-receptor stimulation with isoproterenol by a twofold increase in the concentration of cAMP and this response increased with time in culture. The number of receptors as well as the response to isoproterenol was similar for neonatal myocytes cultured on laminin, collagen type I, or on uncoated culture dishes. From these data we conclude that cultured cardiac myocytes maintain functional β-receptors as they progress into culture, and the expression of β-receptors is not influenced by culture substrates. This investigation was supported by grants HL 24935 and HL 33656 from the National Institutes of Health, Bethesda, MD, and Swedish Medical Research Council grant 07466.  相似文献   

15.
《Life sciences》1993,53(12):PL177-PL181
In membranes prepared from rabbit liver, competition with [3H] prazosin by different α1-agonists and antagonists revealed different affinities in comparison to the results obtained on rat liver membranes, and showed a good correlation with the affinity of the same compounds for the cloned α1c-adrenoceptor subtype. The potencies observed on rat liver membranes were well correlated with the affinity observed for the cloned α1b-adrenoceptors. These results confirm that rabbit and rat liver membranes preparations can be utilized to evaluate the affinity of compounds for these α1-adrenergic subtypes.  相似文献   

16.
Do rat cardiac myocytes release ATP on contraction?   总被引:1,自引:0,他引:1  
ATP is released by numerous cell types in response to mechanical strain. It then acts as a paracrine or autocrine signaling molecule, inducing a variety of biological responses. In this work, we addressed the question whether mechanical force acting on the membranes of contracting cardiomyocytes during periodic longitudinal shortening can stimulate the release of ATP. Electrically stimulated isolated adult rat cardiomyocytes as well as spontaneously contracting mouse cardiomyocytes derived from embryonic stem (ES) cells were assayed for ATP release with the use of luciferase and a sensitive charge-coupled device camera. Sensitivity of soluble luciferase in the supernatant of cardiomyocytes was 100 nM ATP, which is 10-fold below the EC50 values for most purinergic receptors expressed in the heart (1.5–20 µM). Light intensities were not different between resting or contracting adult rat cardiomyocytes. Similar results were obtained with ES-cell-derived contracting mouse cardiomyocytes. ATP release was measurable only from obviously damaged or permeabilized cells. To increase selectivity and sensitivity of ATP detection we have targeted a recombinant luciferase to the sarcolemmal membrane using a wheat germ agglutinin-IgG linker. Contraction of labeled adult rat cardiomyocytes was not associated with measurable bioluminescence. However, when human umbilical vein endothelial cells were targeted with membrane-bound luciferase, shear stress-induced ATP release could be clearly detected, demonstrating the sensitivity of the detection method. In the present study, we did not detect ATP release from contracting cardiomyocytes on the single cell level, despite adequate sensitivity of the detection system. Thus deformation of the contracting cardiomyocyte is not a key stimulus for the release of cellular ATP. cardiomyocytes; luciferase  相似文献   

17.
In mammalian tumor cell lines, localization of hexokinase (HK) isoforms to the cytoplasm or mitochondria has been shown to control their anabolic (glycogen synthesis) and catabolic (glycolysis) activities. In this study, we examined whether HK isoform differences could explain the markedly different metabolic profiles between normal adult and neonatal cardiac tissue. We used a set of novel genetically encoded optical imaging tools to track, in real-time in isolated adult (ARVM) and neonatal (NRVM) rat ventricular myocytes, the subcellular distributions of HKI and HKII, and the functional consequences on glucose utilization. We show that HKII, the predominant isoform in ARVM, dynamically translocates from mitochondria and cytoplasm in response to removal of extracellular glucose or addition of iodoacetate (IAA). In contrast, HKI, the predominant isoform in NRVM, is only bound to mitochondria and is not displaced by the above interventions. In ARVM, overexpression of HKI, but not HKII, increased glycolytic activity. In neonatal rat ventricular myocytes (NVRM), knockdown of HKI, but not HKII, decreased glycolytic activity. In conclusion, differential interactions of HKI and HKII with mitochondria underlie the different metabolic profiles of ARVM and NRVM, accounting for the markedly increased glycolytic activity of NRVM.  相似文献   

18.
Interleukin-1beta (IL-1beta) is a potent negative inotrope implicated in the functional abnormalities of heart failure. Because the adipokine, leptin, protects against some of the cardiovascular effects of endotoxin, we hypothesized that leptin may modulate the cardiosuppressive effects of IL-1beta in isolated cardiomyocytes. Ventricular cardiac myocytes isolated from adult male Sprague Dawley rats were analyzed simultaneously for electrically stimulated contractility and calcium transients following 30 min exposure to IL-1beta (10 ng/ml) with or without 60 min pretreatment with leptin (25 ng/ml). IL-1beta decreased cell shortening, depressed maximal velocities of shortening and relengthening, and prolonged the time to 90% relaxation. The change in fura2-AM fluorescence ratio amplitude (Delta[Ca(2+)]) was significantly depressed and the time to return to baseline [Ca(2+)] was prolonged. The negative inotropic effects of IL-1beta were blocked by the neutral sphingomyelinase inhibitor Manumycin A (5 microM) or the ceramidase inhibitor N-oleoyl ethanolamine (1 microM). Prior exposure of myocytes to leptin blocked IL-1beta-induced cardiosuppression in conjunction with a blunting of IL-1beta stimulated ceramide accumulation. These data suggest that leptin may modulate IL-1beta signaling through the sphingolipid signaling pathway in cardiomyocytes.  相似文献   

19.
《BBA》1986,850(2):249-255
The effect of pH and substrates on the binding of radiolabelled α-cyanocinnamate to mitochondria and submitochondrial particles has been investigated. It has been found that the binding is strongly influenced by the pH of the medium (it decreases on increasing the pH of the medium). The inhibition of pyruvate oxidation by this inhibitor follows the same pH dependence. The pH affects only the affinity of the α-cyanocinnamate binding site without changing their total number. A similar pH dependence has been found in inside-out submitochondrial particles where the binding sites are directly accessible. The quantitative parameters of the binding of α-cyanocinnamate in submitochondrial particles have been determined. The binding can be prevented or displaced by pyruvate and other substrates of the carrier. The turnover number for pyruvate transport in rat-heart mitochondria has been determined.  相似文献   

20.
The distribution of α1-adrenergic receptors in rat liver subcellular fractions was studied using the α1-adrenergic receptor ligand [3H]prazosin. The highest number of [3H]prazosin binding sites was found in a plasma membrane fraction followed by 2 Golgi and a residual microsomal fraction, the numbers of binding sites were 1145, 845, 629 and 223 fmol/mg protein, respectively. When the binding in these fractions was compared with the activity of plasma membrane ‘marker’ enzymes in the same fractions a relative enrichment of [3H]prazosin binding sites was found in the residual microsomes and one of the Golgi fractions. Photoaffinity labelling with 125I-arylazidoprazosin in combination with SDS-polyacrylamide gel electrophoresis revealed the specific binding to 40 and 23 kDa entities in a Golgi fraction, while in plasma membranes the binders had an apparent molecular mass of 36 and 23 kDa. When [3H]prazosin was injected in vivo into rat portal blood followed by subcellular fractionation of liver, a pattern of an initial rapid decline and thereafter a slow decline of radioactivity was noted in all fractions. Additionally, in the two Golgi fractions a transient accumulation of radioactivity occurred between 5 and 10 min after the injection. The ED50 values for displacement of [3H]prazosin with adrenaline was lowest in the plasma membrane fraction, followed by the residual microsomes and Golgi fractions, the values were 10−6, 10−5 and 10−4 mol/l, respectively. On the basis of lack of correlation between distribution of α1-adrenergic antagonist binding and adenylate cyclase activity, differences in the molecular mass of α1-adrenergic antagonist binders, differences in the kinetics of in vivo binding and accumulation of [3H]prazosin and also differences in agonist affinity between plasma membrane and Golgi fractions, it is concluded that α1-adrenergic receptors are localized to low-density intracellular membranes involved in receptor biosynthesis and endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号