首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Branched chain alpha-ketoacid dehydrogenase is a heteroprotein complex of mitochondria and commits the branched chain alpha-ketoacids to their catabolic fate. Inherited nuclear mutations in humans decrease the activity of this complex and result in maple syrup urine disease. Here we demonstrate the restoration of branched chain alpha-ketoacid dehydrogenase activity to fibroblasts from a child with this disorder by transfection with a cDNA for the prebranched chain acyltransferase. Prior to transfection these fibroblasts contained the prebranched chain acyltransferase gene but failed to transcribe the gene and thus lacked the protein. Regulation of the restored complex by phosphorylation mechanisms resembles that of wild-type cells. These results describe a human cell modeling system for testing engineered proteins and support the possibility of gene replacement therapy for this human disorder.  相似文献   

2.
3.
The activity of branched chain alpha-keto acid dehydrogenase in extracts of adipose tissue was elevated after homogenization of tissue segments which had been incubated in buffer containing 0.3 mM leucine. A maximum increase (4-fold) was observed in extracts of tissues incubated in buffer containing 2.5 mM leucine, alpha-Ketoisocaproate and leucine caused maximum increases which were of similar magnitude and which required the same length of incubation of the tissue segments (5 to 15 min). The effect of leucine on branched chain alpha-keto acid dehydrogenase activity was observed both in the presence and absence of insulin, which also increased the activity of the enzyme in tissue extracts. Intact adipose tissue segments oxidized [I-14C]leucine at a maximum rate approximately 4 times that of [1-(14)C]valine. The rate of valine oxidation by intact tissue segments was doubled by addition of 0.2 to 0.5 mM unlabeled leucine, but not isoleucine, to medium containing 2 mM [1-(14)C]valine. Leucine, but not valine, also stimulated the rate of oxidation of 2 mM [U-14C]isoleucine by intact tissue segments. These results suggest that branched chain alpha-keto acid dehydrogenase activity, which is thought to limit the rate of branched chain amino acid oxidation in adipose tissue, may be sensitive to changes in the concentration of leucine in rat blood.  相似文献   

4.
5.
To clarify the enzymatic mechanisms of brain damage inthiamin deficiency, glucose oxidation, acetylcholine synthesis, and the activities of the three major thiamin pyrophosphate (TPP) dependent brain enzymes were compared in untreated controls, in symptomatic pyrithiamin-induced thiamin-deficient rats, and in animals in which the symptoms had been reversed by treatment with thiamin. Although brain slices from symptomatic animals produced14CO2 and14C-acetylcholine from [U-14C]glucose at rates similar to controls under resting conditions, their K+-induced-increase declined by 50 and 75%, respectively. In brain homogenates from these same animals, the activities of two TPP-dependent enzymes transketolase (EC 2.2.1.1) and 2-oxoglutarate dehydrogenase complex (EC 1.2.4.2, EC 2.3.1.61, EC 1.6.4.3) decreased 60–65% and 36%, respectively. The activity of the third TPP-dependent enzyme, pyruvate dehydrogenase complex (EC 1.2.4.1, EC 2.3.1.12, EC 1.6.4.3.) did not change nor did the activity of its activator pyruvate dehydrogenase phosphate phosphatase (EC 3.1.3.43). Although treatment with thiamin for seven days reversed the neurological symptoms and restored glucose oxidation, acetylcholine synthesis and 2-oxoglutarate dehydrogenase activity to normal, transketolase activity remained 30–32% lower than controls. The activities of other TPP-independent enzymes (hexokinase, phosphofructokinase, and glutamate dehydrogenase) were normal in both deficient and reversed animals.Thus, changes in the neurological signs during pyrithiamin-induced thiamin deficiency and in recovery paralleled the reversible damage to a mitochondrial enzyme and impairment of glucose oxidation and acetylcholine synthesis. A more sustained deficit in the pentose pathway enzyme, transketolase, may relate to the anatomical abnormalities that accompany thiamin deficiency.Dedicated to Henry McIlwain.  相似文献   

6.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

7.
We and others have previously shown that octanoate increases the oxidation of branched chain amino acids (BCAA) in skeletal muscle. The present study was designed to investigate the mechanism of this increased oxidation. Studies were performed with rat hind limbs perfused with 0.50 mM L-[1-14C]leucine with or without octanoate. The flux through branched chain keto acid (BCKA) dehydrogenase was measured, and the basal and total activity of BCKA dehydrogenase in skeletal muscle was determined. The rate of flux through BCKA dehydrogenase increased by 37, 119, and 297% with 0.5, 1.0, and 2.0 mM octanoate, respectively. This increase in flux was not due to a change in BCAA aminotransferase activity but was due to an increase in the basal activity of BCKA dehydrogenase. There was a strong correlation (r = 0.96) between increases in flux through BCKA dehydrogenase and increases in the basal activities of BCKA dehydrogenase. Preincubation of BCKA dehydrogenase with Mg2+ caused full activation of this enzyme, but preincubation with octanoate did not activate this enzyme. On the other hand, octanoate completely prevented the ATP-dependent inactivation of fully activated BCKA dehydrogenase. We conclude that octanoate increases the oxidation of leucine in skeletal muscle by increasing the activation of BCKA dehydrogenase. The mechanism of this activation is the inhibition of BCKA dehydrogenase kinase rather than the stimulation of a specific or nonspecific protein phosphatase.  相似文献   

8.
alpha-Ketoisocaproate (ketoleucine) is shown to be metabolized to ketone bodies rapidly by isolated rat liver cells. Acetoacetate is the major end product and maximum rates were observed with 2 mM substrate. Studies with 2-tetradecylglycidic acid (an inhibitor of long chain fatty acid oxidation) showed that ketogenesis from alpha-ketoisocaproate and from endogenous fatty acids were additive. With alpha-ketoisocaproate present as soole substrate at 2 mM, leucine production was less than 10% of alpha-ketoisocaproate uptake and only 30% of the acetyl coenzyme A generated was oxidized in the citric acid cycle. Metabolism of alpha-ketoisocaproate was inhibited by fatty acids, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, and pyruvate. Oxidation of acetyl-CoA generated from alpha-ketoisocaproate was suppressed by oleate and by pyruvate, but was enhanced by lactate. Metabolism between the different branched chain alpha-ketoacids was mutually competitive. When alpha-ketoisocaproate (2 mM) was added in the presence of high pyruvate concentrations (4.4 mM), flux through pyruvate dehydrogenase was decreased, and the proportion of total pyruvate dehydrogenase in the active form (PDHa) also fell. With lactate as substrate, PDHa was only 25% of total activity and was little affected by addition of alpha-ketoisocaproate. These data suggest that enhanced oxidation of acetyl-CoA from alpha-ketoisocaproate by lactate addition is caused by a low activity of pyruvate dehydrogenase combined with increased flux through the citric acid cycle in response to the energy requirements for gluconeogenesis. However, acetyl-CoA generation from pyruvate is apparently insufficiently inhibited by alpha-ketoisocaproate to cause a diversion of acetyl-CoA formed during alpha-ketoisocaproate metabolism from ketone body formation to oxidation in the citric acid cycle. Measurements of the cell contents of CoASH, acetyl-CoA, acid-soluble acyl-CoA, and acid-insoluble fatty acyl-CoA indicated that when the branched chain alpha-ketoacids were added as sole substrate, their oxidation was limited at a step distal to the branched chain alpha-ketoacid dehydrogenase. Acid-soluble acyl-CoA derivatives were depleted after oleate addition in the presence of alpha-ketoisocaproate, suggesting an inhibition of the branched chain alpha-ketoacid dehydrogenase by the elevation of the mitochondrial NADH/NAD+ ratio observed during fatty acid oxidation. This effect was not observed in the presence of oleate and 2-tetradecylglycidic acid.  相似文献   

9.
10.
The branched-chain amino acids (BCAAs) are essential amino acids and therefore must be continuously available for protein synthesis. However, BCAAs are toxic at high concentrations as evidenced by maple syrup urine disease (MSUD), which explains why animals have such an efficient oxidative mechanism for their disposal. Nevertheless, it is clear that leucine is special among the BCAAs. Leucine promotes global protein synthesis by signaling an increase in translation, promotes insulin release, and inhibits autophagic protein degradation. However, leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway, thereby terminating its positive effects on body protein accretion. A strong case can therefore be made that the proper leucine concentration in the various compartments of the body is critically important for maintaining body protein levels beyond simply the need of this essential amino acid for protein synthesis. The goal of the work of this laboratory is to establish the importance of regulation of the branched chain alpha-ketoacid dehydrogenase complex (BCKDC) to growth and maintenance of body protein. We hypothesize that proper regulation of the activity state of BCKDC by way of its kinase (BDK) and its phosphatase (BDP) is critically important for body growth, tissue repair, and maintenance of body protein. We believe that growth and protection of body protein during illness and stress will be improved by therapeutic control of BCKDC activity. We also believe that it is possible that the negative effects of some drugs (PPAR alpha ligands) and dietary supplements (medium chain fatty acids) on growth and body protein maintenance can be countered by therapeutic control of BCDKC activity.  相似文献   

11.
12.
Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a deficiency in branched chain alpha-keto acid dehydrogenase that can result in neurodegenerative sequelae in human infants. In the present study, increased concentrations of MSUD metabolites, in particular alpha-keto isocaproic acid, specifically induced apoptosis in glial and neuronal cells in culture. Apoptosis was associated with a reduction in cell respiration but without impairment of respiratory chain function, without early changes in mitochondrial membrane potential and without cytochrome c release into the cytosol. Significantly, alpha-keto isocaproic acid also triggered neuronal apoptosis in vivo after intracerebral injection into the developing rat brain. These findings suggest that MSUD neurodegeneration may result, at least in part, from an accumulation of branched chain amino acids and their alpha-keto acid derivatives that trigger apoptosis through a cytochrome c-independent pathway.  相似文献   

13.
Summary In Bacillus subtilis a dehydrogenase activity for branched chain amino acids was induced twelvefold in glucose medium by isoleucine. To a lesser degree this activity was induced by metabolically related amino acids with the exception of leucine which hardly induced. The induced enzyme actvity is different from alanine dehydrogenase. The presumable role of this inducible enzyme in anteiso fatty acid biosynthesis is discussed.  相似文献   

14.
Leucine was oxidized by rat adipose tissue at a rate which was not limited by the activity of branched chain amino acid transaminase since high concentrations (10 mM) of [1-14C]leucine and its transamination product, alpha-keto[1-14C]isocaproate, were oxidized at similar rates. Despite the apparent abundance of transaminase activity, however, [1-14C]valine was oxidized at only 10 to 25% of the rate of its transamination product, alpha-keto[1-14C]isovalerate. The net rate at which [1-14C] valine was transaminated by intact tissues was estimated as the sum of the rates of 14CO2 production and alpha-ketoiso[1-14C]valerate release into the medium. Transamination did not limit the rate of valine oxidation since valine was transaminated 3 times as fast as it was oxidized. The rate of valine transamination increased 18-fold when its concentration was raised 100-fold, but the fraction of [1-14C]valine oxidized to 14CO2 remained constant over the range of incubation conditions studied. The oxidation/transamination ratio for leucine was also constant and exceeded the oxidation/transamination ratio for valine unless valine oxidation was stimulated, either by the addition of glucose or leucine. Stimulation of valine oxidation did not increase its transamination but reduced the rate at which alpha-ketoisovalerate was released from the tissue. The faster oxidation of alpha-ketoisocaproate than of alpha-ketoisovalerate may be due to the activation of branched chain alpha-keto acid dehydrogenase by alpha-ketoisocaproate, but the alpha-keto acid oxidation rates do not fully account for the faster transamination of leucine than of valine.  相似文献   

15.
Those aerobic archaea whose genomes have been sequenced possess four adjacent genes that, by sequence comparisons with bacteria and eukarya, appear to encode the component enzymes of a 2-oxoacid dehydrogenase multienzyme complex. However, no catalytic activity of any such complex has ever been detected in the archaea. In Thermoplasma acidophilum, evidence has been presented that the heterologously expressed recombinant enzyme possesses activity with the branched chain 2-oxoacids and, to a lesser extent, with pyruvate. In the current paper, we demonstrate that in Haloferax volcanii the four genes are transcribed as an operon in vivo. However, no functional complex or individual enzyme, except for the dihydrolipoamide dehydrogenase component, could be detected in this halophile grown on a variety of carbon sources. Dihydrolipoamide dehydrogenase is present at low catalytic activities, the level of which is increased three to fourfold when Haloferax volcanii is grown on the branched-chain amino acids valine, leucine and isoleucine.  相似文献   

16.
Branched chain alpha-ketoacid dehydrogenase (EC 1.2.4.4) complex, the rate-limiting enzyme of branched chain amino acid catabolism in most tissues, is subject to regulation by covalent modification, with phosphorylation inactivating and dephosphorylation activating the complex. The enzyme complex from liver of chow-fed rats is mainly in the active form but that from liver of rats fed a low-protein diet is mainly in the inactive form. Isolated hepatocytes were used to identify factors that affect interconversion of branched chain alpha-ketoacid dehydrogenase. The enzyme present in hepatocytes of rats fed a low-protein diet appears much more responsive to regulation by covalent modification than the branched chain alpha-ketoacid dehydrogenase present in hepatocytes of normal chow-fed rats. alpha-Chloroisocaproate, a specific inhibitor of the kinase responsible for phosphorylation and inactivation of the complex, greatly stimulates oxidation of alpha-keto[1-14C]isovalerate by hepatocytes prepared from rats fed a low-protein diet but not from normal chow-fed rats. Oxidizable substrates are also much more effective inhibitors of branched chain alpha-ketoacid oxidation with hepatocytes from rats fed a low-protein diet than from normal chow-fed rats. Activity measurements with cell-free extracts suggest that changes in flux through the dehydrogenase with intact hepatocytes prepared from rats fed a low-protein diet are explained in large part by changes in the proportion of the enzyme in the active, dephosphorylated form. Regulation of liver branched chain alpha-ketoacid dehydrogenase by covalent modification functions to conserve branched chain amino acids for protein synthesis during periods of restricted dietary protein intake.  相似文献   

17.
Yan X  Sun Q  Ji J  Zhu Y  Liu Z  Zhong Q 《Autophagy》2012,8(2):213-221
Supplementation of branched chain amino acids, especially leucine, is critical to improve malnutrition by regulating protein synthesis and degradation. Emerging evidence has linked leucine deprivation induced protein breakdown to autophagy. In this study, we aimed to establish a cell-free assay recapitulating leucine-mediated autophagy in vitro and dissect its biochemical requirement. We found that in a cell-free assay, membrane association of Barkor/Atg14(L), a specific autophagosome-binding protein, is suppressed by cytosol from nutrient-rich medium and such suppression is released by nutrient deprivation. We also showed that rapamycin could efficiently reverse the suppression of nutrient rich cytosol, suggesting an essential role of mTORC1 in autophagy inhibition in this cell-free system. Furthermore, we demonstrated that leucine supplementation in the cultured cells blocks Barkor puncta formation and autophagy activity. Hence, we establish a novel cell-free assay recapitulating leucine-mediated autophagy inhibition in an mTORC1-dependent manner; this assay will help us to dissect the regulation of amino acids in autophagy and related human metabolic diseases.  相似文献   

18.
《Autophagy》2013,9(2):213-221
Supplementation of branched chain amino acids, especially leucine, is critical to improve malnutrition by regulating protein synthesis and degradation. Emerging evidence has linked leucine deprivation induced protein breakdown to autophagy. In this study, we aimed to establish a cell-free assay recapitulating leucine-mediated autophagy in vitro and dissect its biochemical requirement. We found that in a cell-free assay, membrane association of Barkor/Atg14(L), a specific autophagosome-binding protein, is suppressed by cytosol from nutrient-rich medium and such suppression is released by nutrient deprivation. We also showed that rapamycin could efficiently reverse the suppression of nutrient rich cytosol, suggesting an essential role of mTORC1 in autophagy inhibition in this cell-free system. Furthermore, we demonstrated that leucine supplementation in the cultured cells blocks Barkor puncta formation and autophagy activity. Hence, we establish a novel cell-free assay recapitulating leucine-mediated autophagy inhibition in an mTORC1-dependent manner; this assay will help us to dissect the regulation of amino acids in autophagy and related human metabolic diseases.  相似文献   

19.
Lipoic acid is an essential prosthetic group of four mitochondrial enzymes involved in the oxidative decarboxylation of pyruvate, α-ketoglutarate, and branched chain amino acids and in the glycine cleavage. Lipoic acid is synthesized stepwise within mitochondria through a process that includes lipoic acid synthetase. We identified the homozygous mutation c.746G>A (p.Arg249His) in LIAS in an individual with neonatal-onset epilepsy, muscular hypotonia, lactic acidosis, and elevated glycine concentration in plasma and urine. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate and decreased pyruvate dehydrogenase complex activity. A pronounced reduction of the prosthetic group lipoamide was found in lipoylated proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号