首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physostigmine-induced pressor response was studied in adrenalectomized rats. The increase in mean arterial blood pressure elicited by intravenous administration of physostigmine was not altered by adrenalectomy or sham-operation. The pressor response to intracerebroventricular administration of physostigmine was found to be partially inhibited in both acutely adrenalectomized and sham-operated rats, but not in those adrenalectomized 24 h earlier. This inhibition was completely prevented by naloxone pretreatment. The results suggest that endogenous opioid peptide release induced by surgical stress may be responsible for inhibition of the pressor effect of centrally administered physostigmine in rats.  相似文献   

2.
The role of renal nerves in the effects of concomitant NO synthase and non-selective ET(A/)ET(B) receptor inhibition on renal function was investigated in conscious normotensive Wistar rats. NO synthase inhibition alone (10 mg/kg b. w. i.v. L-NAME) in sham-operated rats with intact renal nerves induced an increase in systolic, diastolic and mean arterial pressure, urine flow rate, sodium, chloride and calcium excretion (p<0.05). The effect of L-NAME was markedly reduced by bosentan (10 mg/kg b.w. i.v.) and the values of urine flow rate, sodium, chloride and calcium excretions returned to control level (p<0.05). L-NAME administration one week after a bilateral renal denervation increased blood pressure to a similar extent as in sham-operated rats but decreased urine flow rate (p<0.05) and did not change electrolyte excretion. ET(A/)ET(B) receptor inhibition with bosentan during NO synthase inhibition in the renal denervated rats did not produce changes in urine flow rate or electrolyte excretion. NO synthase inhibition as well as concurrent NO synthase and ET(A/)ET(B) receptor inhibition did not change clearance of inulin or paraaminohippuric acid in sham-operated or renal denervated rats. These results indicate that renal sympathetic nerves play an important modulatory role in NO and endothelin induced effects on renal excretory function.  相似文献   

3.
Recent work indicates that both nitric oxide and cyclooxygenase products play an important role in the renal alterations of liver cirrhosis, although the interactions between them have not been completely established. The purpose of this study was to assess the effect of simultaneous blockade of nitric oxide synthase and cyclooxygenase in rats with chronic bile duct ligation and in control, sham-operated rats. Compared with control rats, chronic bile duct ligation rats, 23-25 days after surgery, showed a decreased mean arterial pressure, natriuresis, and kaliuresis, without differences in glomerular filtration rate, and an increased urinary nitrite excretion. Nitric oxide synthesis inhibition by administration of N(G)-nitro-L-arginine methyl ester induced, in control rats, an increase in mean arterial pressure, without significant changes in natriuresis or glomerular filtration rate. In chronic bile duct ligation rats, N(G)-nitro-L-arginine methyl ester induced an increase in mean arterial pressure, natriuresis, and kaliuresis, together with a reduction in urinary nitrite excretion and an increase in prostaglandin E2 excretion. Cyclooxygenase inhibition with indomethacin induced in both experimental groups a marked inhibition in urinary prostaglandin E2 excretion without significant changes in Na+ or K+ excretion, and a significant increase in urinary nitrite excretion in control rats. N(G)-Nitro-L-arginine methyl ester in addition to indomethacin prevented the indomethacin-induced increase in nitrite excretion and dramatically reduced sodium excretion in both experimental groups. Thus, the present study suggests that both nitric oxide and cyclooxygenase products interact in the control of urinary sodium excretion and that each system is activated in the absence of the other one.  相似文献   

4.
To examine the effects of chronic ouabain treatment on blood pressure (BP), sodium excretion, and renal dopamine D1 receptor level, male Sprague-Dawley (SD) rats were treated with ouabain (27.8 μg kg−1 d−1) intraperitoneally for 5 weeks, and systolic blood pressure (SBP) were recorded weekly. After 5 weeks, sodium excretion and dopamine D1 receptor agonist fenoldopam-mediated natriuresis were measured, and the expression and phosphorylation levels of the renal cortical dopamine D1 receptor were confirmed by Western blot analysis. The effects of ouabain on fenoldopam-mediated inhibition of Na+-K+-ATPase activity were determined by colorimetric assays in human proximal tubular epithelial cells (HK-2 cells). After 5 weeks, the SBP in ouabain group was significantly higher than that in the control group (P < 0.01), but the sodium excretion and renal cortical D1 receptor expression levels were reduced, and D1 receptor phosphorylation levels were increased after ouabain treatment. Intravenous administration of fenoldopam caused an increased sodium excretion in control rats, but failed to induce natriuresis in ouabain-treated rats. In addition, fenoldopam induced a dose–respone (10−9 to 10−6 M) inhibition of Na+-K+-ATPase activity in HK-2 cells,but these effects were significantly diminished in HK-2 cells pretreated with nanomolar concentration of ouabain for 5 days (P < 0.01). We propose that the ouabain-induced reduction of the renal dopamine D1 receptor function serves as a mechanism responsible for sodium retention, and this contributes to the hypertension induced by chronic ouabain treatment.  相似文献   

5.
There is strong evidence that points to excess dietary salt as a major factor contributing to the development of hypertension. Salt sensitivity is associated with glucose intolerance and insulin resistance in both animal models and humans. In insulin resistance, impaired glucose metabolism leads to elevated endogenous aldehydes which bind to vascular calcium channels, increasing cytosolic [Ca2+]i and blood pressure. In an insulin resistant animal model of hypertension, spontaneously hypertensive rats (SHRs), dietary supplementation with lipoic acid lowers tissue aldehydes and plasma insulin levels and normalizes blood pressure. The objective of this study is to examine the effects of a high salt diet on tissue aldehydes, cytosolic [Ca2+]i and blood pressure in WKY rats and to investigate whether dietary supplementation with lipoic acid can prevent a salt induced increase in blood pressure. Starting at 7 weeks of age, WKY rats were divided into three groups of six animals each and treated for 10 weeks with diets as follows: WKY-normal salt (0.7% NaCl); WKY-high salt (8% NaCl); WKY-high salt + lipoic acid (8% NaCl diet + lipoic acid 500 mg/Kg feed). At completion, animals in the high salt group had elevated systolic blood pressure, platelet [Ca2+]i, and tissue aldehyde conjugates compared with the normal salt group and showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidneys. Dietary -lipoic acid supplementation in high salt-treated WKY rats normalized systolic blood pressure and cytosolic [Ca2+]i and aldehydes in liver and aorta. Kidney aldehydes and renal vascular changes were attenuated, but not normalized.  相似文献   

6.
Ouabain is a cardiac glycoside produced in the adrenal glands and hypothalamus. It affects the function of all cells by binding to Na+/K+-ATPase. Several lines of evidence suggest that endogenous ouabain could be involved in the pathogenesis of essential (particularly, salt-sensitive) hypertension. However, information regarding the postulated hypertensive effect of the long-term administration of low-dose exogenous ouabain is inconsistent. This study was designed to help settle this controversy through the use of telemetric monitoring of arterial blood pressure and to elucidate the ouabain-induced alterations that could either promote or prevent hypertension. Ouabain (63 and 324 µg/kg/day) was administered subcutaneously to male Wistar rats. Radiotelemetry was used to monitor blood pressure, heart rate and measures of cardiovascular variability and baroreflex sensitivity. The continuous administration of ouabain for 3 months did not elevate arterial blood pressure. The low-frequency power of systolic pressure variability, urinary excretion of catecholamines, and cardiovascular response to restraint stress and a high-salt diet as well as the responsiveness to α1-adrenergic stimulation were all unaltered by ouabain administration, suggesting that the activity of the sympathetic nervous system was not increased. However, surrogate indices of cardiac vagal nerve activity based on heart rate variability were elevated. Molecular remodeling in mesenteric arteries that could support the development of hypertension (increased expression of the genes for the Na+/Ca2+ exchanger and Na+/K+-ATPase α2 isoform) was not evident. Instead, the plasma level of vasodilatory calcitonin gene-related peptide (CGRP) significantly rose from 55 (11, SD) in the control group to 89 (20, SD) pg/ml in the ouabain-treated rats (PTukey''s = 18.10−5). These data show that long-term administration of exogenous ouabain does not necessarily cause hypertension in rodents. The augmented parasympathetic activity and elevated plasma level of CGRP could be linked to the missing hypertensive effect of ouabain administration.  相似文献   

7.
There is strong evidence that excess dietary salt (NaCl) is a major factor contributing to the development of hypertension. Salt sensitive humans and rats develop hypertension even on a normal salt diet. Salt sensitivity is associated with glucose intolerance and insulin resistance in both humans and animal models, including Dahl salt sensitive (DSS) rats. In insulin resistance, impaired glucose metabolism leads to elevated endogenous aldehydes. These aldehydes bind sulfhydryl groups of membrane proteins, altering calcium channels, increasing cytosolic free calcium ([Ca2+]i) and blood pressure. Treatment with lipoic acid, an endogenous sulfur-containing fatty acid, normalizes insulin resistance and lowers tissue aldehyde conjugates, cytosolic [Ca2+]i, and blood pressure in spontaneously hypertensive rats (SHR). The objective of this study was to investigate the effects of a normal salt diet on tissue aldehyde conjugates, cytosolic [Ca2+]i and blood pressure in DSS rats and to determine whether lipoic acid supplementation prevents the increase in blood pressure and biochemical changes. Starting at 7 weeks of age, DSS rats were divided into three groups of six animals each and treated for 6 weeks with diets as follows: DSS-low salt, 0.4% NaCl; DSS-normal salt, 0.7% NaCl, and; DSS-normal salt + lipoic acid, 0.7% NaCl + lipoic acid 500 mg/kg feed. At completion, animals in the normal salt group had elevated systolic blood pressure, cytosolic [Ca2+]i and tissue aldehyde conjugates as compared to the low salt group. They also showed smooth muscle cell hyperplasia in small arteries and arterioles of the kidney. Dietary lipoic acid supplementation attenuated the increase in systolic blood pressure and associated biochemical and histopathological changes.  相似文献   

8.
1. Cytoplasmic malate dehydrogenase (cMDH) was purified 200-fold.2. Disc gel electrophoresis showed a single major band of activity of cMDH.3. MDH in crude cytoplasmic extract was less sensitive to Cd2+ than purified cytoplasmic MDH.4. Purified cMDH had a Km of 0.14 mM OAA.5. Concentrations of Cd2+ of 0.312 mM significantly inhibited the cMDH.6. The inhibition by Cd2+ was completely reversed by 1.54 and partly reversed by 0.56 mM 2-mercaptoethanol.7. The inhibition by Cd2+ was non-competitive. Calculated Ki values are below those reported for Cd2+-imidazole and Cd2+-cysteine interactions, but above those reported for other Cd2+-thiol group interactions.  相似文献   

9.
α-Glucosidase is a critical metabolic enzyme that produces glucose molecules by catalyzing carbohydrates. The aim of this study is to elucidate biological toxicity of Cd2+ based on α-glucosidase activity and conformational changes. We studied Cd2+-mediated inactivation as well as conformational modulation of α-glucosidase by using kinetics coupled with simulation of molecular dynamics. The enzyme was significantly inactivated by Cd2+ in a reversibly binding behavior, and Cd2+ binding induced a non-competitive type of inhibition reaction (the K i was calculated as 0.3863 ± 0.033 mM). Cd2+ also modulated regional denaturation of the active site pocket as well as overall partial tertiary structural change. In computational simulations using molecular dynamics, simulated introduction of Cd2+ induced in a depletion of secondary structure by docking Cd2+ near the saccharides degradation at the active site, suggesting that Cd2+ modulating enzyme denaturation. The present study elucidated that the binding of Cd2+ triggers conformational changes of α-glucosidase as well as inactivates catalytic function, and thus suggests an explanation of the deleterious effects of Cd2+ on α-glucosidase.  相似文献   

10.
The aim of the present study was to investigate the effects of endogenous endothelin on renal excretory function in spontaneously hypertensive rats (SHR) after inhibition of NO synthesis. The effects of non-selective ET(A)/ET(B) receptor blockade on L-NAME-induced changes in renal excretory function and blood pressure (BP) were investigated in conscious, SHR and normotensive Wistar rats with implanted catheters in the bladder for urine collection, in the femoral artery for BP registration and in the femoral vein for L-NAME and bosentan administration. L-NAME increased systolic, mean and diastolic BP, diuresis, sodium and chloride excretion (p < 0.01) in both normotensive and hypertensive rats but bosentan returned the values of diuresis, sodium and chloride excretion to control level without any changes in BP in normotensive rats. In SHR the effects of L-NAME were reduced after bosentan (p < 0.05) but the values of diuresis, sodium and chloride excretion still remained statistically significant as compared to control level despite the fact that bosentan lowered mean and diastolic BP increased due to L-NAME administration. Endogenous endothelins participate in a different manner in the rise of BP and in the changes in renal excretory function that develops after L-NAME-induced NO synthase inhibition in normotensive rats and in SHR.  相似文献   

11.
The effect of aspirin administration and presumed blockade of prostaglandin synthesis on renal sodium excretion, plasma and extracellular fluid volumes, and blood pressure were examined in rats on a high sodium intake. After acute salt loading aspirin treated rats showed an impaired sodium excretion, while no changes in glomerular filtration rate were observed. In chronically loaded rats (7 weeks) administration of aspirin induced significant increases in both plasma and extracellular fluid volume, but no significant changes in blood pressure were found. The results are consistent with the hypothesis that prostaglandins mediate renal sodium excretion and therefore participate in extracellular fluid volume regulation.  相似文献   

12.
This study evaluated the effect of oral crude Vernonia polyanthes Less. hydroalcoholic extract administration (CHE, 0.5 and 1.0 g/kg body wt., daily for 7 days) on arterial blood pressure and renal sodium excretion in conscious rats. CHE administration decreased arterial blood pressure dose-dependently followed by a significant rise in creatinine clearance and a fall in fractional post-proximal sodium excretion was compared to the control group. These results suggest that blood pressure decrease induced by the oral crude Vernonia hydroalcoholic extract may be blunted by reduction of the post-proximal renal sodium excretion. Thus, the present study shows that Vernonia extract is a potential vasodilatation agent in normotensive rats without any effects on renal tubule autoregulation mechanisms.  相似文献   

13.
Arginine kinase is closely associated with adaptation to environmental stresses such as high salinity and heavy metal ion levels in marine invertebrates. In this study, the effects of Cd2+ on the cuttlefish Sepia pharaonis’ arginine kinase (SPAK) were investigated. SPAK was isolated from the muscles of S. pharaonis and upon further purification, showed a single band on SDS-PAGE. Cd2+ effectively inactivated SPAK, and the double-reciprocal kinetics indicated that Cd2+ induced non-competitive inhibition of arginine and ATP. Spectrofluorometry results showed that Cd2+ induced tertiary structure changes in SPAK with the exposure of hydrophobic surfaces that directly induced SPAK aggregation. The addition of osmolytes, glycine, and proline successfully blocked SPAK aggregation and restored the conformation and activity of SPAK. Molecular dynamics simulations involving SPAK and Cd2+ showed that Cd2+ partly blocks the entrance of ATP to the active site, and this result is consistent with the experimental results showing Cd2+-induced inactivation of SPAK. These results demonstrate the effect of Cd2+ on SPAK enzymatic function and unfolding, including aggregation and the protective effects of osmolytes on SPAK folding. This study provides concrete evidence of the toxicity of Cd2+ in the context of the metabolic enzyme SPAK, and it illustrates the toxic effects of heavy metals and detoxification mechanisms in cuttlefish.  相似文献   

14.
The effect of aspirin administration and presumed blockade of prostaglandin synthesis on renal sodium excretion, plasma and extracellular fluid volumes, and blood pressure were examined in rats on a high sodium intake. After acute salt loading aspirin treated rats showed an impaired sodium excretion, while no changes in glomerular filtration rate were observed. In chronically loaded rats (7 weeks) administration of aspirin induced significant increases in both plasma and extracellular fluid volume, but no significant changes in blood pressure were found. The results are consistent with the hypothesis that prostaglandins mediate renal sodium excretion and therefore participate in extracellular fluid volume regulation.  相似文献   

15.
In spontaneously hypertensive rats (SHRs) excess endogenous aldehydes bind sulfhydryl groups of membrane proteins, altering membrane Ca2+ channels, increasing cytosolic free calcium and blood pressure. N-acetyl cysteine normalizes elevated blood pressure in SHRs by binding excess endogenous aldehydes. It is known that dietary vitamin B6 supplementation can increase the level of endogenous cysteine. Our objective was to investigate whether a dietary supplementation of vitamin B6 can prevent hypertension and associated changes in SHRs. Starting at 7 weeks of age, animals were divided into three groups of six animals each. Animals in WKY-control group and SHR-control group were given a normal vitamin B6 diet; and SHR-vitamin B6 group, a high vitamin B6 diet (20 times the recommended dietary intake; RDA) for the next 14 weeks. After 14 weeks, systolic blood pressure, platelet [Ca2+]i and liver, kidney and aortic aldehyde conjugates were significantly higher in SHR controls compared to WKY controls. These animals also showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidneys. Dietary vitamin B6 supplementation attenuated the increase in systolic blood pressure, tissue aldehyde conjugates and associated changes. These results further support the hypothesis that aldehydes are involved in increased systolic blood pressure in SHRs and suggest that vitamin B6 supplementation may be an effective antihypertensive.  相似文献   

16.
Objective: We investigated the effect of leptin on nitric oxide production in lean and rats made obese by a high‐calorie diet. Research Methods and Procedures: The animals were placed in metabolic cages, and urine was collected in 2‐hour periods after leptin (1 mg/kg intraperintoneally) or vehicle administration. Blood was obtained 0.5, 1, 2, 4, or 6 hours after injection. Results: Leptin had no effect on systolic blood pressure in either lean or obese animals. Plasma concentration of NO metabolites (nitrites + nitrates, NOx) increased in lean rats by 31.5%, 58.0%, and 27.9% at 1, 2, and 4 hours after leptin injection, respectively. In the obese group, plasma NOx increased only at 2 hours (+36.5%). Leptin increased urinary NOx excretion by 31.8% in the first 2‐hour period after injection in lean but not in obese rats. In lean animals, leptin elevated plasma cyclic 3′, 5′‐guanosine monophosphate (cGMP) at 1, 2, and 4 hours by 35.3%, 96.3%, and 57.3%, respectively. In the obese group, plasma cGMP was higher only at 2 and 4 hours (+44.6% and +32.1%, respectively). Urinary excretion of cGMP increased in lean animals by 67.1% in the first period and by 50.4% in the second period. In the obese group, leptin induced a 53.9% increase in urinary cGMP excretion only in the first 2‐hour period. Discussion: The stimulatory effect of leptin on NO production is impaired in dietary‐induced obesity; however, leptin does not increase blood pressure in obese animals, suggesting that other NO—independent depressor mechanisms are stimulated.  相似文献   

17.
In spontaneously hypertensive rats (SHRs) excess endogenous aldehydes bind sulfhydryl groups of membrane proteins, altering membrane Ca2+ channels and increasing cytosolic free calcium and blood pressure. The thiol compound, N-acetyl cysteine, normalizes elevated blood pressure in SHRs by binding excess endogenous aldehydes. Vitamin C can increase tissue cysteine and glutathione levels. The aim of the present study was to investigate whether a dietary supplementation of vitamin C can lower tissue aldehydes and blood pressure and normalize associated biochemical and histopathological changes in SHRs. Starting at 12 weeks of age, animals were divided into 3 groups of 6 animals each. Animals in the WKY-control group and SHR-control group were given a normal diet and the SHR-vitamin C group a diet supplemented with vitamin C (1000 mg/kg feed) for the next 9 weeks. After nine weeks, systolic blood pressure, platelet [Ca2+]i, plasma insulin and liver, kidney and aortic aldehyde conjugates were significantly higher in SHR controls as compared to WKY controls and the SHR-vitamin C group. SHR-controls also showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidneys. Dietary vitamin C supplementation in SHRs lowered the systolic blood pressure, tissue aldehyde conjugates and attenuated adverse renal vascular changes.  相似文献   

18.
Recent studies suggest that adipose tissue hormone, leptin, is involved in the pathogenesis of arterial hypertension. However, the mechanism of hypertensive effect of leptin is incompletely understood. We investigated whether antioxidant treatment could prevent leptin-induced hypertension. Hyperleptinemia was induced in male Wistar rats by administration of exogenous leptin (0.25 mg/kg twice daily s.c. for 7 days) and separate groups were simultaneously treated with superoxide scavenger, tempol, or NAD(P)H oxidase inhibitor, apocynin (2 mM in the drinking water). After 7 days, systolic blood pressure was 20.6% higher in leptin-treated than in control animals. Both tempol and apocynin prevented leptin-induced increase in blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes increased in leptin-treated rats by 66.9% and 67.7%, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals (MDA+4-HNE), was 60.3% higher in the renal cortex and 48.1% higher in the renal medulla of leptin-treated animals. Aconitase activity decreased in these regions of the kidney following leptin administration by 44.8% and 45.1%, respectively. Leptin increased nitrotyrosine concentration in plasma and renal tissue. Urinary excretion of nitric oxide metabolites (NO(x)) was 57.4% lower and cyclic GMP excretion was 32.0% lower in leptin-treated than in control group. Leptin decreased absolute and fractional sodium excretion by 44.5% and 44.7%, respectively. Co-treatment with either tempol or apocynin normalized 8-isoprostanes, MDA+4-HNE, aconitase activity, nitrotyrosine, as well as urinary excretion of NO(x), cGMP and sodium in rats receiving leptin. These results indicate that oxidative stress-induced NO deficiency is involved in the pathogenesis of leptin-induced hypertension.  相似文献   

19.
The role of blood volume regulatory mechanisms located in the low pressure system in the control of urinary excretion was studied using hypobaric pressure breathing in normal and diabetes insipidus (Brattleboro strain with a congenital lack of vasopressin) rats. Rats were placed in an altitude simulator chamber for 4 h. A pump maintained pressure reduced to 701, 577 and 472 mbar simulating respectively altitude of 3,000, 4,500 and 6,000 m. In normal rats, hypobaric breathing induced an increase in urine flow, urinary urea and K+ excretion and urinary pH but did not significantly modify creatinine and Na+ excretion. In diabetes insipidus rats, hypobaric breathing produced oliguria and an decrease in urea, creatinine, Na+, K+, Cl- urinary excretions. Since acute hypobaric pressure breathing induced opposed effects in normal and Brattleboro rats, it is suggested that this kind of experimental procedure which increases intrathoracic blood volume elicits a diuretic response through an inhibition of vasopressin release. These experiments confirm the main role of vasopressin in the control of central blood volume.  相似文献   

20.
Retention, dynamics of75Se and65Zn distribution, and elimination were studied in rats after separate or joint single doses of these metals. White female Wistar rats were divided into four groups (fifteen rats each). Group I received Na2 75SeO3 (0.1 mg Se/kg i.g.), group II received Na2 75SeO3+ZnCl2 (5 mg Zn/kg s.c.), group III received65ZnCl2, and group IV received65ZnCl2+Na2SeO3. The zinc and selenium contents in the tissues were estimated during 120 h after administration; excretion in urine and feces of animals was determined throughout the experiment. Combined administration of zinc and selenium resulted in an enhanced selenium retention in the brain, spleen, kidneys, blood, lungs, and heart. A selenium-induced increase in the concentration of zinc was noted in the bowels, blood, liver, kidneys, spleen, brain, and lungs. The effects of the zinc/selenium interaction were visible especially in the lowered level of excretion of these elements. Zinc induced a decrease in the excretion of selenium in urine, with no concomitant changes in the excretion in feces. However, a visible decrease in the excretion of zinc in the feces was observed in the presence of selenium. The present results indicate an occurrence of clear-cut interaction effects between zinc and selenium administered simultaneously in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号