首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Developmental biology》1987,121(1):182-191
We investigated whether all stem cells of Hydra can differentiate both somatic cells and gametes or if a separate germ line exists in these phylogenetically old organisms. The differentiation potential of single stem cells was analyzed by applying a statistical cloning procedure. All stem cell clones were found to differentiate somatic cells. No clone was found to contain stem cells which do not differentiate. Most of the clones could be induced to form gametes. No clone was found that produced gametes only. The results indicate that stem cells are multipotent in the sense that individual stem cells can differentiate into somatic cells as well as germ line cells.  相似文献   

2.
3.
Pools of human adipose-derived adult stem (hADAS) cells can exhibit multiple differentiated phenotypes under appropriate in vitro culture conditions. Because adipose tissue is abundant and easily accessible, hADAS cells offer a promising source of cells for tissue engineering and other cell-based therapies. However, it is unclear whether individual hADAS cells can give rise to multiple differentiated phenotypes or whether each phenotype arises from a subset of committed progenitor cells that exists within a heterogeneous population. The goal of this study was to test the hypothesis that single hADAS are multipotent at a clonal level. hADAS cells were isolated from liposuction waste, and ring cloning was performed to select cells derived from a single progenitor cell. Forty-five clones were expanded through four passages and then induced for adipogenesis, osteogenesis, chondrogenesis, and neurogenesis using lineage-specific differentiation media. Quantitative differentiation criteria for each lineage were determined using histological and biochemical analyses. Eighty one percent of the hADAS cell clones differentiated into at least one of the lineages. In addition, 52% of the hADAS cell clones differentiated into two or more of the lineages. More clones expressed phenotypes of osteoblasts (48%), chondrocytes (43%), and neuron-like cells (52%) than of adipocytes (12%), possibly due to the loss of adipogenic ability after repeated subcultures. The findings are consistent with the hypothesis that hADAS cells are a type of multipotent adult stem cell and not solely a mixed population of unipotent progenitor cells. However, it is important to exercise caution in interpreting these results until they are validated using functional in vivo assays.  相似文献   

4.
Bone marrow contains mesenchymal cells that can be isolated and grown in vitro. Using appropriate treatment protocols such cultures can be induced to differentiate to yield osteoblasts, adipocytes, and chondrocytes. However, previous experiments had not addressed the question whether single pluripotent stem cells exist and can give rise to these different cell lineages or whether bone marrow mesenchymal cell preparations represent a mixture of committed precursors. We have used human adult bone marrow-derived mesenchymal cells obtained from iliac crest biopsies to demonstrate clonal outgrowth after limiting dilution and we show that some clones can be expanded over more than 20 cumulative population doublings and differentiated to osteoblasts, adipocytes, and chondrocytes. Our data provide direct experimental evidence that cultures of bone marrow-derived mesenchymal cells contain individual cells that fulfil two essential stem cell criteria: (i) extensive self-renewal capacity and (ii) multi-lineage potential.  相似文献   

5.
Stem-cell organization in mouse small intestine   总被引:14,自引:0,他引:14  
We have investigated stem-cell organization in mouse small intestine (SI) by using a cellular marker induced by somatic mutation. In small intestinal whole mounts from heterozygous Dlb-1b/Dlb-1a mice stained with a peroxidase conjugate of Dolichos biflorus agglutinin (DBA-Px), mutations of Dlb-1b in stem cells result in loss of DBA-Px binding and so are recognizable as wholly or partly unstained crypts. The frequency of these clonal patterns can be measured during the accumulation of spontaneous mutations in untreated mice, or after treatment with ethylnitrosourea (ENU). The results show that there is a single infrequently dividing stem cell that maintains the epithelium of each crypt through a population of transit stem cells. The entire crypt epithelium is renewed approximately every 12 weeks.  相似文献   

6.
Spermatogenesis originates from a small population of spermatogonial stem cells. These cells are believed to divide infinitely and support spermatogenesis throughout life in the male. In this investigation, we examined the possibility of deriving transgenic offspring from single spermatogonial stem cells. Spermatogonial stem cells were transfected in vitro with a plasmid vector containing a drug resistant gene. Stably transfected stem cell clones were isolated by in vitro drug selection; these clones were expanded and used to produce transgenic progeny following spermatogonial transplantation into infertile recipients. An average of 49% of the offspring carried the transgene, and the recipient mice continued to produce monoclonal transgenic progeny a year after transplantation. Thus, a somatic cell-based genetic approach can be used to modify and select clones of spermatogonial stem cells in a manner similar to embryonic stem cells. The feasibility of genetic selection using postnatal spermatogonial stem cells demonstrates their extensive proliferative potential and provides the opportunity to develop new methods for generating stable animal transgenics or for germline gene therapy.  相似文献   

7.
Recent evidence suggests that most malignancies are driven by “cancer stem cells” sharing the signature characteristics of adult stem cells: the ability to self renew and to differentiate. Furthermore these cells are thought to be quiescent, infrequently dividing cells with a natural resistance to chemotherapeutic agents. These studies theorize that therapies, which effectively treat the majority of tumor cells but ‘miss’ the stem cell population, will fail, while therapies directed at stern cells can potentially eradicate tumors. In breast cancer, researchers have isolated ‘breast cancer stem cells’ capable of recreating the tumor in vivo and in vitro. Generated new tumors contained both additional numbers of cancer stem cells and diverse mixed populations of cells present in the initial tumor, supporting the intriguing self‐renewal and differentiation characteristics. In the present study, an antibody phage library has been used to search for phage displayed‐single chain antibodies (scFv) with selective affinity to specific targets on breast cancer stem cells. We demonstrate evidence of two clones binding specifically to a cancer stem cell population isolated from the SUMl59 breast cancer cell line. These clones had selective affinity for cancer stem cells and they were able to select cancer stem cells among a large population of non‐stem cancer cells in paraffin‐embedded sections. The applicability of these clones to paraffin sections and frozen tissue specimens made them good candidates to be used as diagnostic and prognostic markers in breast cancer patient samples taking into consideration the cancer stern cell concept in tumor biology. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
Induced pluripotent stem cell technology, also termed iPS, is an emerging approach to reprogram cells into an embryonic stem cell-like state by viral transduction with defined combinations of factors. iPS cells share most characteristics of embryonic stem cells, counting pluripotency and self-renewal, and have so far been obtained from mouse and humans, including patients with genetic diseases. Remarkably, autologous transplantation of cell lineages derived from iPS cells will eliminate the possibility of immunological rejection, as well as current ethical issues surrounding human embryonic stem cell research. However, before iPS can be used for clinical purposes, technical problems must be overcome. Among other considerations, full and homogeneous iPS reprogramming is an important prerequisite. However, despite the fact that cells from several mouse tissues can be successfully induced to iPS, the overall efficiency of chimera formation of these clones remains low even if selection for Oct4 or Nanog expression is applied. In this report, we demonstrate that cells from the mouse meningeal membranes express elevated levels of the embryonic master regulator Sox2 and are highly amenable to iPS. Meningeal iPS clones, generated without selection, are fully and homogeneously reprogrammed based on DNA methylation analysis and 100% chimera competent. Our results define a population of somatic cells that are ready to undergo iPS, thus highlighting a very attractive cell type for iPS research and application.  相似文献   

9.
Mammalian intestinal epithelial cells in primary culture: a mini-review   总被引:6,自引:0,他引:6  
Epithelial cells lining the digestive tract represent a highly organized system built up by multipotent stem cells. A process of asymmetric mitosis produces a population of proliferative cells that are rapidly renewed and migrate along the crypt-villus axis, differentiating into functional mature cells before dying and exfoliating into the intestinal lumen. Isolated crypts or epithelial cells retaining high viability can be prepared within a few h after tissue sampling. After cells are cultured in serum-free media, short-term studies (16-48 h) can be conducted for endocrinology, energy metabolism, or programmed cell death. However, long-term primary culture of intestinal cells (up to 10 d) is still difficult despite progress in isolation methodologies and manipulation of the cell microenvironment. The main problem in developing primary culture is the lack of structural markers specific to the stem cell compartment. The design of a microscopic multidimensional analytic system to record the expression profiles of biomarkers all along the living intestinal crypt should improve basic knowledge of the survival and growth of adult crypt stem cells, and the selection of totipotent embryonic stem cells capable of differentiating into intestinal tissues should facilitate studies of the genomic basis of endodermal tissue differentiation.  相似文献   

10.
Cancer heterogeneity is a significant factor in response to treatment and escape leading to relapse. Within an individual cancer, especially blood cancers, there exists multiple subclones as well as distinct clonal expansions unrelated to the clinically detected, dominant clone. Over time, multiple subclones and clones undergo emergence, expansion, and extinction. Although sometimes this intra-clonal and inter-clonal heterogeneity can be detected and/or quantified in tests that measure aggregate populations of cells, frequently, such heterogeneity can only be detected using single cell analysis to determine its frequency and to detect minor clones that may subsequently emerge to become drug resistant and dominant. Most genetic/genomic tests look at the pooled tumor population as a whole rather than at its individual cellular components. Yet, minor clones and cancer stem cells are unlikely to be detected against the background of expanded major clones. Because selective pressures are likely to govern much of what is seen clinically, single cell analysis allows identification of otherwise cryptic compartments of the malignancy that may ultimately mediate progression and relapse. Single cell analysis can track intra- or inter-clonal heterogeneity and provide useful clinical information, often before changes in the disease are detectable in the clinic. To a very limited extent, single cell analysis has already found roles in clinical care. Because inter- and intra-clonal heterogeneity likely occurs more frequently than can be currently appreciated on a clinical level, future use of single cell analysis is likely to have profound clinical utility.  相似文献   

11.
12.
ADSCs (adipose‐derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue‐derived single‐cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose‐derived single‐cell‐clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ‐secretase inhibitor, DAPT (N‐[N‐(3,5‐difluorophenacetyl)‐l ‐alanyl]‐(S)‐phenylglycine t‐butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft‐tissue augmentation application.  相似文献   

13.
Clones of ectopic stem cells in the regeneration of muscle defects in vivo   总被引:1,自引:0,他引:1  
Yang R  Chen M  Lee CH  Yoon R  Lal S  Mao JJ 《PloS one》2010,5(10):e13547
Little is known about whether clones of ectopic, non-muscle stem cells contribute to muscle regeneration. Stem/progenitor cells that are isolated for experimental research or therapeutics are typically heterogeneous. Non-myogenic lineages in a heterogeneous population conceptually may compromise tissue repair. In this study, we discovered that clones of mononucleated stem cells of human tooth pulp fused into multinucleated myotubes that robustly expressed myosin heavy chain in vitro with or without co-culture with mouse skeletal myoblasts (C2C12 cells). Cloned cells were sustainably Oct4+, Nanog+ and Stro1+. The fusion indices of myogenic clones were approximately 16-17 folds greater than their parent, heterogeneous stem cells. Upon infusion into cardio-toxin induced tibialis anterior muscle defects, undifferentiated clonal progenies not only engrafted and colonized host muscle, but also expressed human dystrophin and myosin heavy chain more efficaciously than their parent heterogeneous stem cell populations. Strikingly, clonal progenies yielded ~9 times more human myosin heavy chain mRNA in regenerating muscles than those infused with their parent, heterogeneous stem cells. The number of human dystrophin positive cells in regenerating muscles infused with clonal progenies was more than ~3 times greater than muscles infused with heterogeneous stem cells from which clonal progenies were derived. These findings suggest the therapeutic potential of ectopic myogenic clones in muscle regeneration.  相似文献   

14.
Glioblastoma multiforme is a severe form of cancer most likely arising from the transformation of stem or progenitor cells resident in the brain. Although the tumorigenic population in glioblastoma is defined as composed by cancer stem cells (CSCs), the cellular target of the transformation hit remains to be identified. Glioma stem cells (SCs) are thought to have a differentiation potential restricted to the neural lineage. However, using orthotopic versus heterotopic xenograft models and in vitro differentiation assays, we found that a subset of glioblastomas contained CSCs with both neural and mesenchymal potential. Subcutaneous injection of CSCs or single CSC clones from two of seven patients produced tumor xenografts containing osteo-chondrogenic areas in the context of glioblastoma-like tumor lesions. Moreover, CSC clones from four of seven cases generated both neural and chondrogenic cells in vitro. Interestingly, mesenchymal differentiation of the tumor xenografts was associated with reduction of both growth rate and mitotic index. These findings suggest that in a subclass of glioblastomas the tumorigenic hit occurs on a multipotent stem cell, which may reveal its plasticity under specific environmental stimuli. The discovery of such biological properties might provide considerable information to the development of new therapeutic strategies aimed at forcing glioblastoma stem cell differentiation.  相似文献   

15.
M cells are a kind of intestinal epithelial cell in the follicle-associated epithelium of Peyer's patches. These cells can transport antigens and microorganisms into underlying lymphoid tissues. Despite the important role of M cells in mucosal immune responses, the origin and mechanisms of differentiation as well as cell death of M cells remain unclear. To clarify the mechanism of M cell differentiation, we established a novel murine intestinal epithelial cell line (MIE) from the C57BL/6 mouse. MIE cells grow rapidly and have a cobblestone morphology, which is a typical feature of intestinal epithelial cells. Additionally, they express cytokeratin, villin, cell-cell junctional proteins, and alkaline phosphatase activity and can form microvilli. Their expression of Musashi-1 antigen indicates that they may be close to intestinal stem cells or transit-amplifying cells. MIE cells are able to differentiate into the M cell lineage following coculture with intestinal lymphocytes, but not with Peyer's patch lymphocytes (PPL). However, PPL costimulated with anti-CD3/CD28 MAbs caused MIE cells to display typical features of M cells, such as transcytosis activity, the disorganization of microvilli, and the expression of M cell markers. This transcytosis activity of MIE cells was not induced by T cells isolated from PPL costimulated with the same MAbs and was reduced by the depletion of the T cell population from PPL. A mixture of T cells treated with MAbs and B cells both from PPL led MIE cells to differentiate into M cells. We report here that MIE cells have the potential ability to differentiate into M cells and that this differentiation required activated T cells and B cells.  相似文献   

16.
Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.  相似文献   

17.
体外神经干细胞克隆球的超微结构-透射电镜观察   总被引:5,自引:0,他引:5  
许汉鹏  卢春蓉  苟琳  鞠躬 《细胞生物学杂志》2002,24(4):251-254,T004
为观察培养的神经干细胞克隆球内部的超微结构特征,采用无血清培养技术,在体外进行小鼠纹状体神经干细胞克隆球的培养传代,经过免疫细胞化学鉴定后,对单一的神经干细胞克隆球进行固定,常规透射电镜观察。结果表明,神经干细胞可以在bFGF等生长因子存在的情况下,在无血清培养液内增殖生成悬浮状态的神经干细胞克隆球,这种克隆可被诱导生成神经细胞和神经胶质细胞,电镜下,神经干细胞克隆球内部细胞相互间可形成特化的膜性结构,细胞内可有小泡出现,部分细胞有凋亡的形态。  相似文献   

18.
Adult reserve stem cells and their potential for tissue engineering   总被引:6,自引:0,他引:6  
Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories, have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher order. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve, precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including, tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50–70 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.  相似文献   

19.
Isolated hamster intestinal epithelial cells can be separated by velocity sedimentationion on 2–10% Ficoll gradients into three subpopulations of cells which differ in morphology, biochemistry, physiology, and membrane components. These subpopulations are not pure but are enriched in a single cell type to the extent that differences in cell function can be observed. The proliferative crypt cells are separated from the digestive-absorptive villus cells. A third subpopulation with a distinctive morphology is also obtained. Quantitation of DNA recoveries from the gradients indicates that this population constitutes approximately one-third of the epithelial cell population. These carrot-shaped cells are found adjacent to the digestive-absorptive columnar epithelial cells on the villus. The two types of villus cells differ in glycolipid or glycoprotein components of the brush border as shown by lectin binding experiments with the isolated cells. The gradient data also suggest that only one-third of the intestinal epithelial cell population is responsible for most monosaccharide absorption in hamster small intestine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号