首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autodiploid strains were induced by colchicine treatment of Aspergillus niger WU-2223L, a citric acid-producing strain. In shaking culture, a representative autodiploid strain, L-d1, yielded higher citric acid than the parental strain, WU-2223L. When glucose was used as a carbon source, L-d1 and WU-2223L produced 67.2 g/l and 62.0 g/l of citric acid, respectively, from 120 g/l of glucose in 9 d-cultivation. Furthermore, the autodiploid strain L-d1 produced 49.6 g/l of citric acid, 1.4 times as much as that produced by WU-2223L from 120 g/l of soluble starch. During the whole period of cultivation with starch, the extracellular glucoamylase activity of L-d1 was on the same level as that of WU-2223L, but the extracellular acid-protease activity of L-d1 was much higher. The addition of pepstatin, an inhibitor of acid protease, to the culture broth at 2 d greatly increased the extracellular glucoamylase activity, and citric acid production by L-d1 reached a level of 59.0 g/l. During several subcultivations on both minimal and complete agar media, the autodiploid strains were genetically stable since they formed diploid conidia in their uniform colonies without producing sectors, and maintained citric acid productivity. However, when cultivated on minimal and complete agar media containing benomyl as a haploidizing reagent, the autodiploid strains readily formed sectors of haploid segregants. The properties of the haploid strains obtained by the benomyl treatment of the autodiploid strains were similar in morphology and citric acid productivity to those of the parental strain, WU-2223L. These results indicated that the enhanced production of citric acid from soluble starch by the autodiploid strains was due to autodiploid formation but not to gene mutation caused by the colchicine treatment.  相似文献   

2.
 Mutants having impaired protein synthesis, that is cycloheximide-sensitive mutants of a citric-acid-hyper-accumulating strain, were induced from Aspergillus niger WU-2223L. Selection was on the basis of a presumption that the mutants should be more sensitive to cycloheximide than WU-2223L. In shake culture without methanol as a promotor substance, seven mutants accumulated approximately 1.8–3.5 times as much citric acid as WU-2223L. The best mutant, CHM I-C3, accumulated 69.4 mg citric acid/ml from 120 mg glucose/ml in shake culture without methanol, this amount being 1.1 times the amount accumulated by WU-2223L with methanol. Furthermore, under the conditions without methanol the mutants appeared to be more efficient than WU-2223L in employing the consumed glucose for the accumulation of citric acid. It was also confirmed that CHM I-C3 exhibited a significantly increased level of intracellular NH+ 4 accumulation. The addition of 2% (v/v) methanol or 20 μg cycloheximide/ml to the medium caused a remarkable increase of citric acid accumulation by WU-2223L: about 3.1 and 2.4 times respectively. However, the addition of these substances produced negative effects on citric acid accumulation by the mutants. With 2% (v/v) methanol, WU-2223L showed a remarkably decreased level of protein accumulation but a substantially increased level of intracellular NH+ 4 accumulation. However, these phenomena were also observed in CHM I-C3 without methanol. These results indicate that the intracellular circumstances of the cycloheximide-sensitive mutants without methanol were similar to those of WU-2223L with methanol, and that the impairment of protein synthesis contributed to increased citric acid accumulation by the mutants in the absence of methanol. Received: 21 November 1994 / Received last revision: 10 July 1995 / Accepted: 26 July 1995  相似文献   

3.
Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.  相似文献   

4.
The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.  相似文献   

5.
6.
Summary Many mutant strains showing resistance to 2-deoxy-d-glucose (DG) on minimal medium containing glycerol as a carbon source were induced from Aspergillus niger WU-2223L, a citric acid-producing strain. The mutant strains were classifiable into two types according to their growth characteristics. On the agar plates containing glucose as a sole carbon source, mutant strains of the first type showed good growth irrespective of the presence or absence of DG. When cultivated in shake cultures, some strains of the first type, such as DGR1–2, showed faster glucose consumption and growth than strain WU-2223L. The period for citric acid production shortened from 9 days for strain WU-2223L to 6–7 days for these mutant strains. The levels and yields of citric acid production of the mutant strains were almost the same as those of strain WU-2223L. The mutant strains of the second type, however, showed very slow or no growth on both the agar plates containing glucose and fructose as sole carbon sources. In shake cultures, mutant strains such as DGR2-8 showed decreased glucose consumption rates, resulting in very low production of citric acid.  相似文献   

7.
8.
In the tricarboxylic acid (TCA) cycle, NADP+-specific isocitrate dehydrogenase (NADP+-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP+ as a cofactor. We constructed an NADP+-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP+-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP+-ICDH activity. Therefore, NADP+-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.  相似文献   

9.
Lactobacillus amylophilus strain GV6, isolated from corn starch processing industrial wastes, was amylolytic and produced 0.96?g L(+) lactic acid per gram of soluble starch. The optimum temperature and pH for growth and L(+) lactic acid production were 37?°C and 6.5, respectively. At low substrate concentrations, the lactic acid production on corn starch was almost similar to soluble starch. The strain is fermenting various naturally available starches directly to lactic acid. The total amylase activity of the strain is 0.59?U/ml/min. The strain produced 49 and 76.2?g/l L(+) lactic acid from 60?g/l corn starch and 90?g/l soluble starch, respectively. This is the highest L(+) lactic acid among the wild strains of L. amylophilus reported so far.  相似文献   

10.
The mitochondrial citrate transport protein (CTP) functions as a malate–citrate shuttle catalyzing the exchange of citrate plus a proton for malate between mitochondria and cytosol across the inner mitochondrial membrane in higher eukaryotic organisms. In this study, for functional analysis, we cloned the gene encoding putative CTP (ctpA) of citric acid-producing Aspergillus niger WU-2223L. The gene ctpA encodes a polypeptide consisting 296 amino acids conserved active residues required for citrate transport function. Only in early-log phase, the ctpA disruptant DCTPA-1 showed growth delay, and the amount of citric acid produced by strain DCTPA-1 was smaller than that by parental strain WU-2223L. These results indicate that the CTPA affects growth and thereby citric acid metabolism of A. niger changes, especially in early-log phase, but not citric acid-producing period. This is the first report showing that disruption of ctpA causes changes of phenotypes in relation to citric acid production in A. niger.  相似文献   

11.
通过PCR扩增软化芽孢杆菌α-环糊精葡萄糖基转移酶基因,将基因片段克隆到大肠杆菌-枯草杆菌穿梭载体pGJ103中,转化枯草杆菌WB600得基因工程菌进行外源表达。在1.5%的麦芽糖初始发酵培养基上摇瓶培养,48 h后重组枯草杆菌产酶活性为6.1U/ml。通过单因素分析和响应面分析对重组枯草杆菌产CGT酶摇瓶发酵条件进行优化。分析得到培养基关键组分麦芽糖,玉米淀粉和酵母粉三者最佳浓度分别为:15.5g/L,13g/L和20g/L。在此条件下,摇瓶培养36h后α-CGT酶活性为17.6U/ml,5L罐分批发酵30h后酶活达到20U/ml (水解活性为1.4×104 IU/ml)。  相似文献   

12.
In Aspergillus niger, a cyanide (CN)- and antimycin A-insensitive and salicylhydroxamic acid (SHAM)-sensitive respiratory pathway exists besides the cytochrome pathway and is catalyzed by the alternative oxidase (AOX). In this study, A. niger WU-2223L, a citric acid-producing strain, was cultivated in a medium containing 120 g/l of glucose, which is the concentration usually needed for citric acid production, and the effects of 2% (v/v) methanol, an inducer of citric acid, 2 microM antimycin A, and 1 mM SHAM on AOX activities and citric acid production were investigated. The AOX activity, measured as duroquinol oxidase, was localized in the purified mitochondria regardless of the presence of any additives. When WU-2223L was cultivated with antimycin A or methanol, both citric acid production and citric acid productivity, shown as the ratio of production per mycelial dry weight, increased with the increase of both the activity of AOX and the rate of CN-insensitive and SHAM-sensitive respiration. On the other hand, when WU-2223L was cultivated with SHAM, an inhibitor of AOX, the CN-insensitive and SHAM-sensitive respiration was not detected and the citric acid production and the productivity drastically decreased, although mycelial growth was not affected. These results clearly indicated that the CN-insensitive and SHAM-sensitive respiration catalyzed by AOX, localized in the mitochondria, contributed to citric acid production by A. niger.  相似文献   

13.
Low efficiencies of gene targeting hamper functional genomics in industrially important strains of Aspergillus niger. To generate strains showing high gene-targeting frequencies in A. niger WU-2223L producing citric acid, disruption of kueA encoding Ku80 homolog was performed. Disruption of kueA increased gene-targeting frequencies to 70%, and had no effect on citric acid production.  相似文献   

14.
When glucose (120mg/ml) was used as a carbon source, Aspergillus niger Yang no. 2. showed a markedly low citric acid productivity in shake culture (15.4 mg/ml) but a high productivity in semi-solid and surface cultures (72.3 mg/ml and 67.6 mg/ml, respectively). Since the viscosity of the medium was assumed to be one of the important factors for citric acid productivity in shake culture, the effects of the addition of viscous substances on citric acid productivity of strain Yang no. 2 were examined. The addition of 2.0–6.0 mg gelatin/ml as a viscous additive to the medium containing glucose as a carbon source increased slightly the medium viscosity but substantially increased the citric acid productivity in shake culture to levels of 52.0–53.3 mg/ml, about 3.4 times as much as that without gelatin. However, no influence of gelatin addition was observed in semi-solid and surface cultures, i.e. under static cultivation conditions. Different mycelial morphologies of the strain were observed when cultivations were done in shake culture with or without the addition of gelatin. Addition of 5.0 mg agar/ml, 5.0 mg carageenan/ml, 2.5 mg carboxymethylcellulose/ml and 2.5 mg polyethylene glycol 6000/ml, to the medium containing glucose as a carbon source also increased the citric acid productivity in shake culture to levels of 39.2–54.7 mg/ml. Since Yang no. 2 does not utilize these viscous substances, these results suggested that the viscous substances functioned as protectants for the mycelium from physiological stresses due to shaking and as a consequence resulted in a remarkably increased citric acid productivity in shake culture.  相似文献   

15.
The purpose of this investigation is to enhance the production of the immunosuppressant drug rapamycin by subjecting the strain CBS 773.23 to ultraviolet (UV) and N-methyl-N′-nitro-N-nitroso guanidine (NTG) mutations. Among all the mutants tested, MTCC 5681 (NRC-CM03/SH) obtained by NTG mutagenesis of strain CBS 773.72 showed the highest activity, 210 mg/L. The effect of different factors including medium composition, pH, temperature, and intensity of mixing on rapamycin production was studied. Based on the study, the optimal concentrations of soluble starch and dry yeast granules were found to be 50 g/L and 1.5 g/L, respectively. Furthermore, optimal values for pH, temperature, and shaking speed were found to be 6.0, 28°C, and 220 rpm, respectively. The production of rapamycin increased 1.6-fold, to 360 mg/L, in shake-flask culture using the optimal combination of factors observed compared with basal cultivation medium using MTCC 5681 mutant strain.  相似文献   

16.
In this study, in order to isolate inulinase overproducers from the marine yeast Pichia guilliermondii, its cells were treated by using UV light and LiCl. The mutant M-30 with enhanced inulinase production was obtained and was found to be stable after cultivation for 20 generations. Response surface methodology (RSM) was used to optimize the medium compositions and cultivation conditions for inulinase production by the mutant M-30 in liquid fermentation. Inulin, yeast extract, NaCl, temperature, pH for maximum inulinase production by the mutant M-30 were found to be 20.0 g/l, 5.0 g/l, 20.0 g/l, 28 °C and 6.5, respectively. Under the optimized conditions, 127.7 U/ml of inulinase activity was reached in the liquid culture of the mutant M-30 whereas the predicted maximum inulinase activity of 129.8 U/ml was derived from RSM regression. Under the same conditions, its parent strain only produced 48.1 U/ml of inulinase activity. This is the highest inulinase activity produced by the yeast strains reported so far. We also found that inulin could be actively converted into monosaccharides by the crude inulinase.  相似文献   

17.
Histidine decarboxylase production from Lactobacillus hilgardii 5w, isolated from wine, was inhibited by the presence of l-malic acid in the basal culture medium. The inhibition was related to l-malic acid concentration. The maximal production of the enzyme at 12 h of culture incubated at 30°C was inhibited 71% by 2 g/L l-malic acid and 47% by 0.5 g/L. In these conditions l-malic acid consumption was 16% and 20% respectively. The addition of 300 mg/L citric acid to the basal medium stimulated the enzyme production from 9 to 45 nmoles/min/mg dry weight, and the increase was correlated with citric acid concentration. When different concentrations of l-malic acid were added to the basal medium plus 200 mg/L citric acid, reversion of stimulation was observed, achieving the maximum at a concentration of 2 g/L. In this case, citric acid comsumption was not modified, whereas L-malic acid utilization was higher.  相似文献   

18.
Low efficiencies of gene targeting hamper functional genomics in industrially important strains of Aspergillus niger. To generate strains showing high gene-targeting frequencies in A. niger WU-2223L producing citric acid, disruption of kueA encoding Ku80 homolog was performed. Disruption of kueA increased gene-targeting frequencies to 70%, and had no effect on citric acid production.  相似文献   

19.
l-Threonine producing α-amino-β-hydroxyvaleric acid resistant mutants were derived from E. coli K-12 with 3 x 10-5 frequency. One of mutants, strain β-101, accummulated maximum amount of l-threonine (1. 9 g/liter) in medium. Among isoleucine, methionine and lysine auxotrophs derived from E. coli K-12, only methionine auxotrophs produced l-threonine. In contrast, among isoleucine, methionine and lysine auxotrophs derived from β-101, l-threonine accumulation was generally enhanced in isoleucine auxotrophs. One of isoleucine auxotrophs, strain βI-67, produced maximum amount of l-threonine (4. 7 g/liter). Methionine auxotroph, βM-7, derived from β-101 produced 3.8 g/liter, and βIM-4, methionine auxotroph derived from β1-67, produced 6.1 g/liter, when it was cultured in 3% glucose medium supplemented with 100 μg/ml of l-isoleucine and l-methionine, respectively. These l-threonine productivities of E. coli mutants were discussed with respect to the regulatory mechanisms of threonine biosynthesis. A favourable fermentation medium for l-threonine production by E. coli mutants was established by using strain βM-4.  相似文献   

20.
During cultivation under nitrogen starvation, Yarrowia lipolytica produces a mixture of citric acid and isocitric acid whose ratio is mainly determined by the carbon source used. We report that mitochondrial succinate–fumarate carrier YlSfc1 controls isocitric acid efflux from mitochondria. YlSfc1 purified and reconstituted into liposomes transports succinate, fumarate, oxaloacetate, isocitrate and α-ketoglutarate. YlSFC1 overexpression determined the inversion of isocitric acid/citric acid ratio towards isocitric acid, resulting in 33.4 ± 1.9 g/L and 43.3 ± 2.8 g/L of ICA production in test-tube cultivation with glucose and glycerol, respectively. These titers represent a 4.0 and 6.3-fold increase compared to the wild type. YlSFC1 gene expression was repressed in the wild type strain grown in glucose-based medium compared to olive oil medium explaining the reason for the preferred citric acid production during Y. lipolytica growth on carbohydrates. Coexpression of YlSFC1 and adenosine monophosphate deaminase YlAMPD genes together with inactivation of citrate mitochondrial carrier YlYHM2 gene enhanced isocitric acid accumulation up to 41.4 ± 4.1 g/L with an isocitric acid/citric acid ratio of 14.3 in a small-scale cultivation with glucose as a carbon source. During large-scale cultivation with glucose pulse-feeding, the engineered strain produced 136.7 ± 2.5 g/L of ICA with a process selectivity of 88.1%, the highest reported titer and selectivity to date. These results represent the first reported isocitric acid secretion by Y. lipolytica as a main organic acid during cultivation on carbohydrate. Moreover, we demonstrate for the first time that the replacement of one mitochondrial transport system for another can be an efficient tool for switching product accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号