首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hematopoietic stem cells (HSCs) isolated from mouse fetal liver, like adult HSCs, are Thy-1lo Lin- Sca-1+. Donor-derived V gamma 3+ T cells were detected in fetal thymic lobes repopulated in vitro with fetal liver HSCs, but not in those with adult bone marrow HSCs. Single clonogenic fetal HSCs gave rise to thymic progeny that include V gamma 3+, other gamma delta+, and alpha beta+ T cells. No V gamma 3+ T cells were detected in adult thymus injected intrathymically with either fetal or adult HSCs. These results support the hypothesis that only fetal HSCs have the capacity to differentiate into V gamma 3+ T cells in the fetal thymic microenvironment and that the developmental potential of HSCs may change during ontogeny.  相似文献   

2.
Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2Rγnull (NOG) mice. Hypoxic culture (1% O2) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34+CD38 cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.  相似文献   

3.
《Cytotherapy》2014,16(9):1280-1293
Background aimsInadequate engraftment of hematopoietic stem cells (HSCs) after in utero HSC transplantation (IUHSCT) remains a major obstacle for the prenatal correction of numerous hereditary disorders. HSCs express CXCR4 receptors that allow homing and engraftment in response to stromal-derived factor 1 (SDF-1) ligand present in the bone marrow stromal niche. Plerixafor, a mobilization drug, works through the interruption of the CXCR4-SDF-1 axis.MethodsWe used the fetal sheep large-animal model to test our hypotheses that (i) by administering plerixafor in utero before performing IUHSCT to release fetal HSCs and thus vacating recipient HSC niches, (ii) by using human mesenchymal stromal/stem cells (MSCs) to immunomodulate and humanize the fetal BM niches and (iii) by increasing the CXCR4+ fraction of CD34+ HSCs, we could improve engraftment. Human cord blood-derived CD34+ cells and human bone marrow-derived MSCs were used for these studies.ResultsWhen MSCs were transplanted 1 week before CD34+ cells with plerixafor treatment, we observed 2.80% donor hematopoietic engraftment. Combination of this regimen with additional CD34+ cells at the time of MSC infusion increased engraftment levels to 8.77%. Next, increasing the fraction of CXCR4+ cells in the CD34+ population albeit transplanting at a late gestation age was not beneficial. Our results show engraftment of both lymphoid and myeloid lineages.ConclusionsPrior MSC and HSC cotransplantation followed by manipulation of the CXCR4–SDF-1 axis in IUHSCT provides an innovative conceptual approach for conferring competitive advantage to donor HSCs. Our novel approach could provide a clinically relevant approach for enhancing engraftment early in the fetus.  相似文献   

4.
Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2γc(-/-) mice. This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show that immature HSCs acquire, in this environment, the features of HSCs.  相似文献   

5.
6.
7.
ARAP3 is a GTPase-activating protein (GAP) that inactivates Arf6 and RhoA small GTPases. ARAP3 deficiency in mice causes a sprouting angiogenic defect resulting in embryonic lethality by E11. Mice with an ARAP3 R302,303A mutation (Arap3KI/KI) that prevents activation by phosphoinositide-3-kinase (PI3K) have a similar angiogenic phenotype, although some animals survive to adulthood. Here, we report that hematopoietic stem cells (HSCs) from rare adult Arap3KI/KI bone marrow are compromised in their ability to reconstitute recipient mice and to self-renew. To elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in hematopoiesis, we conditionally deleted Arap3 in hematopoietic cells and in several cell types within the HSC niche. Excision of Arap3 in hematopoietic cells using Vav1-Cre does not alter the ability of ARAP3-deficient progenitor cells to proliferate and differentiate in vitro or ARAP3-deficient HSCs to provide multi-lineage reconstitution and to undergo self-renewal in vivo. Thus, our data suggest that ARAP3 does not play a cell-autonomous role in HSPCs. Deletion of Arap3 in osteoblasts and mesenchymal stromal cells using Prx1-Cre resulted in no discernable phenotypes in hematopoietic development or HSC homeostasis in adult mice. In contrast, deletion of Arap3 using vascular endothelial cadherin (VEC or Cdh5)-driven Cre resulted in embryonic lethality, however HSCs from surviving adult mice were largely normal. Reverse transplantations into VEC-driven Arap3 conditional knockout mice revealed no discernable difference in HSC frequencies or function in comparison to control mice. Taken together, our investigation suggests that despite a critical role for ARAP3 in embryonic vascular development, its loss in endothelial cells minimally impacts HSCs in adult bone marrow.  相似文献   

8.
A tightly controlled balance between hematopoietic stem and progenitor cell compartments is required to maintain normal blood cell homeostasis throughout life, and this balance is regulated by intrinsic and extrinsic cellular factors. Cav-1 is a 22-kDa protein that is located in plasma membrane invaginations and is implicated in regulating neural stem cell and embryonic stem cell proliferation. However, the role of Cav-1 in hematopoietic stem cell (HSC) function is largely unknown. In this study, we used Cav-1−/− mice to investigate the role of Cav-1 in HSCs function during aging. The results showed that Cav-1−/− mice displayed a decreased percentage of B cells and an increased percentage of M cells in the bone marrow and peripheral blood, and these changes were due to an increased number of HSCs. FACS analysis showed that the numbers of LinSca1+c-kit+ cells (LSKs), long-term HSCs (LT-HSCs), short-term HSCs and multipotent progenitors were increased in Cav-1−/− mice compared with Cav-1+/+ mice, and this increase became more pronounced with aging. An in vitro clonogenic assay showed that LT-HSCs from Cav-1−/− mice had reduced ability to self-renew. Consistently, an in vivo competitive transplantation assay showed that Cav-1−/− mice failed to reconstitute hematopoiesis. Moreover, a Cav-1 deletion disrupted the quiescence of LSKs and promoted cell cycle progression through G2/M phase. In addition, we found that Cav-1 deletion impaired the ability of HSCs to differentiate into mature blood cells. Taken together, these data suggest that Cav-1-deficient cells impaired HSCs quiescence and induced environmental alterations, which limited HSCs self-renewal and function.  相似文献   

9.
Notch1 mutations are found in more than 50% of human T cell acute lymphoblastic leukemia (T-ALL) cells. However, the functions of Notch1 for human T cell development and leukemogenesis are not well understood. To examine the role of Notch1, human hematopoietic stem cells (HSCs), which had been transduced with a constitutively active form of Notch1 (ICN1), were transplanted into severely immunodeficient NOD/Shi-scid-IL2rγnull (NOG) mice. We found that the great majority of the ICN1-expressing hematopoietic cells in the bone marrow expressed surface markers for T cells, such as CD3, CD4, and CD8, and that this T cell development was independent of the thymus. Accordingly, phenotypically mature CD8+ single positive (SP) T cells were observed in the spleen. Furthermore, T-ALL developed in one NOG recipient mouse out of 26 that had been secondary transferred with the T cells developed in the first NOG mice. These results indicate that Notch1 signaling in HSCs promotes CD8+ SP T cell development, and that T cell leukemogenesis may require additional oncogenic factors other than Notch1 activation.  相似文献   

10.
The study of hematopoietic stem cells (HSCs) and the process by which they differentiate into committed progenitors has been hampered by the lack of in vitro clonal assays that can support erythroid, myeloid and lymphoid differentiation. We describe a method for the isolation from human fetal liver of highly purified candidate HSCs and progenitors based on the phenotypes CD38CD34++ and CD38+CD34++, respectively. We also describe a method for the growth of colony-forming cells (CFCs) from these cell populations, under defined culture conditions, that supports the differentiation of erythroid, CD14/CD15+ myeloid, CD1a+ dendritic cell and CD56+ NK cell lineages. Flow cytometric analyses of individual colonies demonstrate that CFCs with erythroid, myeloid and lymphoid potential are distributed among both the CD38 and CD38+ populations of CD34++ progenitors. Published: June 11, 2002.  相似文献   

11.
《Bioscience Hypotheses》2008,1(2):100-102
Fetal microchimerism refers to the presence of fetal cells in maternal blood and tissues during pregnancy. This microchimerism may result from trafficking of fetal and maternal blood across the placenta during pregnancy. Physiological changes in the maternal blood cellular milieu are also recognized during pregnancy and in the early postpartum period. Earlier studies showed that maternal blood contains CD34+ hematopoietic stem cells (HSCs) that bear paternal genetic markers or male phenotype, suggesting that these cells circulated to the mother from male fetuses during pregnancy. Other studies showed that these maternal HSCs have significantly lower expansion potential than their fetal counterparts. We have recently shown increased percentages of CD34+ HSCs in peripheral blood of pregnant and parous women. Herein, we hypothesize that pregnancy stimulates the production of endogenous CD34+ HSCs of maternal origin, a phenomenon which potentially could favor postpartum regenerative capacity.  相似文献   

12.
The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.  相似文献   

13.
The pulmonary resident T lymphocytes (RPLs) expressing a nearly invariant T cell receptor γδ heterodimer (γδTCR) migrate from fetal thymus to the lung epithlium, followed by RPL subsets expressing diverse sets of γδTCRs after birth. However, it remains unclear whether the fetal type Vγ6/Vδ1+ RPLs are essential for γδ T cell repertoire formation in the lung epithelium. In this study, we found a marked decrease in the number of γδRPLs at 4 weeks of age in Vδ1−/− mice and they predominantly expressed Vγ6 and Vδ4 genes. The skewed diversity towards the Vδ4-(Dδ1)-Dδ2-Jδ2 junctional region was observed only in γδ RPLs from 4-week-old Vδ1−/− mice, compared with those from 8-week-old Vδ1−/− mice and the both ages of wild-type mice. These results suggest that the invariant Vδ1+ T cells are crucial not only for optimal γδ T cell expansion but also for affecting the migration or microenvironment for other γδ T cells in the lung epithelium.  相似文献   

14.
Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi‐potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co‐expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34?CD90? cells and was able to differentiate in vitro into adipocytes (PPARγ+ and adiponectin+) and endothelial cells (CD31+VEGF+Flk1+). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34+/CD90+ stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34+/CD90 ASCs are extremely useful for regenerative medicine. J. Cell. Biochem. 114: 1039–1049, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
The bone marrow is the principal site where HSCs and more mature blood cells lineage progenitors reside and differentiate in an adult organism. HSCs constitute a minute cell population of pluripotent cells capable of generating all blood cell lineages for a life-time1. The molecular dissection of HSCs homeostasis in the bone marrow has important implications in hematopoiesis, oncology and regenerative medicine. We describe the labeling protocol with fluorescent antibodies and the electronic gating procedure in flow cytometry to score hematopoietic progenitor subsets and HSCs distribution in individual mice (Fig. 1). In addition, we describe a method to extensively enrich hematopoietic progenitors as well as long-term (LT) and short term (ST) reconstituting HSCs from pooled bone marrow cell suspensions by magnetic enrichment of cells expressing c-Kit. The resulting cell preparation can be used to sort selected subsets for in vitro and in vivo functional studies (Fig. 2).Both trabecular osteoblasts2,3 and sinusoidal endothelium4 constitute functional niches supporting HSCs in the bone marrow. Several mechanisms in the osteoblastic niche, including a subset of N-cadherin+ osteoblasts3 and interaction of the receptor tyrosine kinase Tie2 expressed in HSCs with its ligand angiopoietin-15 concur in determining HSCs quiescence. "Hibernation" in the bone marrow is crucial to protect HSCs from replication and eventual exhaustion upon excessive cycling activity6. Exogenous stimuli acting on cells of the innate immune system such as Toll-like receptor ligands7 and interferon-α6 can also induce proliferation and differentiation of HSCs into lineage committed progenitors. Recently, a population of dormant mouse HSCs within the lin- c-Kit+ Sca-1+ CD150+ CD48- CD34- population has been described8. Sorting of cells based on CD34 expression from the hematopoietic progenitors-enriched cell suspension as described here allows the isolation of both quiescent self-renewing LT-HSCs and ST-HSCs9. A similar procedure based on depletion of lineage positive cells and sorting of LT-HSC with CD48 and Flk2 antibodies has been previously described10. In the present report we provide a protocol for the phenotypic characterization and ex vivo cell cycle analysis of hematopoietic progenitors, which can be useful for monitoring hematopoiesis in different physiological and pathological conditions. Moreover, we describe a FACS sorting procedure for HSCs, which can be used to define factors and mechanisms regulating their self-renewal, expansion and differentiation in cell biology and signal transduction assays as well as for transplantation.  相似文献   

17.
18.
The adult bone marrow, situated within the bone cavity, comprises three distinct stem cell populations: hematopoietic stem cells (HSCs), mesenchymal stromal/stem cells (MSCs) and endothelial progenitor/stem cells (EPCs). HSCs are a well-characterized population of self-renewing cells that give rise to all blood cells. The definition of MSCs is more complex due to the limited understanding of MSC properties. In general, MSCs are considered multipotent stromal cells that are able to differentiate into various cell types, including osteoblasts, chondrocytes and adipocytes. Compared to HSCs and MSCs, EPCs are a newly discovered population of stem/progenitor cells with the capacity to differentiate into endothelial cells, the cells forming the inner lining of a blood vessel.  相似文献   

19.
20.
Hematopoietic stem and progenitor cells (HSPCs) are a small population of undifferentiated cells that have the capacity for self-renewal and differentiate into all blood cell lineages. These cells are the most useful cells for clinical transplantations and for regenerative medicine. So far, it has not been possible to expand adult hematopoietic stem cells (HSCs) without losing their self-renewal properties. CD74 is a cell surface receptor for the cytokine macrophage migration inhibitory factor (MIF), and its mRNA is known to be expressed in HSCs. Here, we demonstrate that mice lacking CD74 exhibit an accumulation of HSCs in the bone marrow (BM) due to their increased potential to repopulate and compete for BM niches. Our results suggest that CD74 regulates the maintenance of the HSCs and CD18 expression. Its absence leads to induced survival of these cells and accumulation of quiescent and proliferating cells. Furthermore, in in vitro experiments, blocking of CD74 elevated the numbers of HSPCs. Thus, we suggest that blocking CD74 could lead to improved clinical insight into BM transplant protocols, enabling improved engraftment.

Hematopoietic stem and progenitor cells (HSPCs) can self-renew and differentiate into all blood cell lineages, making them useful for clinical transplantations and regenerative medicine. This study shows that blocking the MIF receptor CD74 increases the accumulation of HSPCs and could improve the efficacy of bone marrow transplantation protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号