首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The actions of adenylyl compounds were investigated in the circular muscle of the pedal disc of the sea anenome Actinia equina.2. Adenosine, adenosine 5'-diphosphate and adenosine 5'-triphosphate (ATP), but not adenosine 5'-monophosphate or the analogues of ATP, α,β-methylene ATP, and 2-methylthio ATP, caused concentration-dependent contractions.3. Neurogenic contractions in response to electrical field stimulation were not consistently affected by any of the adenylyl compounds and could be either potentiated or almost abolished by them.4. Reactive Blue 2, a vertebrate P2-purinoceptor antagonist, caused concentration-dependent contractions which were mediated by nerves, being blocked by the anaesthetic chlorobutanol.5. The pharmacological profile of the adenylyl compounds in the pedal disc of Actinia equina is different from that observed in other invertebrate species and adds to the greater diversity of such profiles in invertebrates than in vertebrates.  相似文献   

2.
Abstract: We found that extracellular ATP can increase the intracellular Ca2+ concentration ([Ca2+]i) in mouse pineal gland tumor (PGT-β) cells. Studies of the [Ca2+]i rise using nucleotides and ATP analogues established the following potency order: ATP, adenosine 5′-O-(3-thiotriphosphate) ≥ UTP > 2-chloro-ATP > 3′-O-(4-benzoyl)benzoyl ATP, GTP ≥ 2-methylthio ATP, adenosine 5′-O-(2-thiodiphosphate) (ADPβS) > CTP. AMP, adenosine, α,β-methyleneadenosine 5′-triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and UMP had little or no effect on the [Ca2+]i rise. Raising the extracellular Mg2+ concentration to 10 mM decreases the ATP-and UTP-induced [Ca2+]i rise, because the responses depend on the ATP4? and UTP4? concentrations, respectively. The P2U purinoceptor-selective agonist UTP and the P2Y purinoceptor-selective agonist ADPβS induce inositol 1,4,5-trisphosphate generation in a concentration-dependent manner with maximal effective concentrations of ~100 µM. In sequential stimulation, UTP and ADPβS do not interfere with each other in raising the [Ca2+]i. Costimulation with UTP and ADPβS results in additive inositol 1,4,5-trisphosphate generation to a similar extent as is achieved with ATP alone. Pretreatment with pertussis toxin inhibits the action of UTP and ATP by maximally 45–55%, whereas it has no effect on the ADPβS response. Treatment with 1 µM phorbol 12-myristate 13-acetate inhibits the ADPβS-induced [Ca2+]i rise more effectively than the ATP- and UTP-induced responses. These results suggest that P2U and P2Y purinoceptors coexist on PGT-β cells and that both receptors are linked to phospholipase C.  相似文献   

3.
The effect of extracellular ATP was studied in PC12 cells, a neurosecretory line that releases ATP. The addition of micromolar concentrations of ATP to PC12 cells evoked a transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i), as measured with the Ca2+-dye fura 2. AMP and adenosine were without effect, ruling out the involvement of P1 receptors in mediating this response. The increase in [Ca2+]i was reduced in calcium-free media and virtually eliminated by the addition of EGTA, suggesting that calcium influx was the primary response initiated by extracellular ATP. Nucleotide triphosphates such as UTP and, to a lesser degree, ITP also evoked an increase in [Ca2+]i while GTP and CTP had little effect. In order to identify the receptor subtype mediating this response, the efficacy of ATP and ATP cogeners was assessed. The rank order potency was ATP > adenosine 5′-[γ-thio]triphosphate > ADP > 2-methylthioadenosine triphosphate (2-MeSATP) ~ adenosine 5′-[β-thio]diphosphate ? adenosine 5′-[αβ-methylene] triphosphate, adenosine 5′-[βγ-imido]triphosphate. This profile is not characteristic of either the P2X or the conventional P2Y receptors. The Ca2+ response exhibited desensitization to ATP that was dependent on the extracellular metabolism of ATP. UTP was equally effective in desensitizing the response. ATP, UTP, ITP, and to a much lesser extent 2MeSATP increased inositol phosphate production in a dose-dependent manner, suggesting receptor coupling to phosphatidylinositol-specific phospholipase C. These data are consistent with the view that PC12 cells express a class of non-P2Y nucleotide receptors (P2N) that mediate calcium influx and the accumulation of inositol phosphates. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Arnost Horak  Saul Zalik 《BBA》1976,430(1):135-144
Spinach chloroplasts were able to photophosphorylate the ADP analog α,β-methylene adenosine 5′-diphosphate (AOPCP). Phosphorylation of AOPCP was catalyzed by chloroplasts that were washed or dialyzed to remove free endogenous nucleotides. In the presence of glucose, hexokinase, AOPCP and 32Pi, the 32P label was incorporated into α,β-methylene adenosine 5′-triphosphate (AOPCPOP).In contrast to photophosphorylation of AOPCP, the ATP analog AOPCPOP was a poor substrate for the ATP-Pi exchange reaction and its hydrolysis was neither stimulated by light and dithiothreitol nor inhibited by Dio-9.Photophosphorylation of AOPCP was inhibited by the α,β- and β,γ-substituted methylene analogs of ATP, while phosphorylation of ADP was unaffected by them. The ATP-Pi exchange was also unaffected by both ATP analogs, while the weak AOPCPOP-Pi exchange was inhibited by the β,γ-methylene analog of ATP.Direct interaction of methylene analogs with the chloroplast coupling factor ATPase was indicated by the enzymatic hydrolysis of AOPCPOP on polyacrylamide gels.  相似文献   

5.
Abstract

A series of analogues of adenine nucleotides have been synthesized and tested for Pharmacological potency and resistance to dephosphorylation at a variety of isolated tissue preparations where ATP is active. Structure-activity studies defined four subtypeso f purinoceptors, and enabled the design of specific agonists for P2x and for P2y purinoceptors to be undertaken. L-Adenosine 5′-β, γ-methylenetriphosphonate (L-AMP-PCP) is a specific P2x purinoceptor agonist, and adenosine 5′-β-fluorodiphosphate (ADP-β-F) is a specific P2y agonist.  相似文献   

6.
Lymphocyte responses to the galactosyl binding lectins, SBA and PNA, and responses to Con A are suppressed by cAMP analogs and agents that increase intracellular cAMP to a greater extent than are responses to PHA. Adenosine shares with cAMP this selective inhibitory effect. ATP inhibits lymphocyte proliferation via generation of adenosine. This conclusion is based on the findings that (i) β,γ-methylene ATP (β,γ-met ATP) is similar to ATP in its inhibitory effects, whereas α,β-met ATP has little effect on lymphocyte proliferation, (ii) α,β-met ATP reverses both ATP and β,γ-met ATP induced suppression, but does not reverse adenosine-mediated suppression, and (iii) inhibition of adenosine deaminase potentiates ATP and β,γ met ATP-mediated suppression of blastogenesis. The relative potency of various noncyclic adenosine compounds in suppressing mitogen-induced blastogenesis is: 2-chloradenosine > ATP ≥ ADP > AMP > adenosine.  相似文献   

7.
Abstract: We have compared the characteristics of receptors for nucleotide analogues and the involvement of phospholipase C (PLC) in the effector mechanism in NG108-15 neuroblastoma and C6 glioma cells. The relative potency of these analogues to stimulate inositol phosphate (IP) formation is UTP > UDP ? 2-methylthio-ATP (2-MeSATP), GTP > ATP, CTP > ADP > UMP in NG108-15 cells and ATP > UTP > ADP > GTP > UDP ? 2Me-SATP, CTP, UMP in C6 glioma cells. α,β-Methylene-ATP, β,γ-methylene-ATP, AMP, and adenosine had little or no effect in both types of cells. The EC50 values were 3 and 106 µM for UTP in NG108-15 and C6 glioma cells, respectively. The EC50 value for ATP in C6 glioma cells was 43 µM. 2-MeSATP was threefold more potent than ATP in NG108-15 cells but had little effect in C6 glioma cells at 1 mM. In NCB-20 cells, a similar rank order of potency to that found in NG108-15 cells, i.e., UTP ? GTP > ATP > CTP, was observed. In both NG108-15 and C6 glioma cells, preincubation with ATP or UTP caused a pronounced cross-desensitization of subsequent nucleotide-stimulated IP production. ATP and UTP displayed no additivity in terms of IP formation at maximally effective concentrations. In contrast, endothelin-1, bradykinin, and NaF interacted in an additive manner with either nucleotide in stimulating PI hydrolysis. Pretreatment with pertussis toxin did not affect ATP-, UTP-, and GTP-stimulated IP generation in these cells, indicating that nucleotide receptors coupled to PLC by a pertussis toxin-resistant G protein in both cell types. Short-term treatment of the cells with protein kinase C (PKC) activators [phorbol 12-myristate 13-acetate (PMA) and octylindolactam V] produced a dose-dependent inhibition of ATP- and UTP-induced IP formation with a greater extent and higher susceptibility in C6 glioma cells than in NG108-15 cells. Furthermore, a 24-h exposure of the cells to PMA resulted in an obvious attenuation of nucleotide-induced IP formation in C6 glioma cells but failed to change the response in NG108-15 cells. These results suggest that distinct nucleotide receptors that respond to ATP and UTP with different selectivity exist in NG108-15 and C6 glioma cells. These heterogeneous nucleotide receptors coupled to PLC undergo discriminative modulation by PKC. NG108-15 and NCB-20 neuroblastoma are two cell lines that showed the highest specificity to extracellular UTP rather than ATP among the nucleotide receptors so far studied in various cells, suggesting the presence of a pyrimidine receptor in these cells.  相似文献   

8.
Biochemical properties of nucleotide pyrophosphatase/phosphodiesterase (NPP) in rat serum have been described by assessing its nucleotide phosphodiesterase activity, using p-nitrophenyl-5′-thymidine monophosphate (p-Nph-5′-TMP) as a substrate. It was demonstrated that NPP activity shares some typical characteristics described for other soluble NPP, such as divalent cation dependence, strong alkaline pH optimum (pH 10.5), inhibition by glycosaminoglycans, and K m for p-Nph-5′-TMP hydrolysis of 61.8 ± 5.2 μM. In order to characterize the relation between phosphodiesterase and pyrophosphatase activities of NPP, we have analyzed the effects of different natural nucleotides and nucleotide analogs. ATP, ADP, and AMP competitively inhibited p-Nph-5′-TMP hydrolysis with K i values ranging 13–43 μM. Nucleotide analogs, α,β-metATP, BzATP, 2-MeSATP, and dialATP behaved as competitive inhibitors, whereas α,β-metADP induced mixed inhibition, with K i ranging from 2 to 20 μM. Chromatographic analysis revealed that α,β-metATP, BzATP, and 2-MeSATP were catalytically degraded in the serum, whereas dialATP and α,β-metADP resisted hydrolysis, implying that the former act as substrates and the latter as true competitive inhibitors of serum NPP activity. Since NPP activity is involved in generation, breakdown, and recycling of extracellular adenine nucleotides in the vascular compartment, the results suggest that both hydrolyzable and non-hydrolyzable nucleotide analogs could alter the amplitude and direction of ATP actions and could have potential therapeutic application.  相似文献   

9.
GABAA receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory neurotransmission in the central nervous system. They are thought to be composed of 2 alpha (α), 2 beta (β) subunits and one other such as a gamma (γ) or delta (δ) subunit. The potency of GABA is influenced by the subunit composition. However, there are no reported systematic studies that evaluate GABA potency on a comprehensive number of subunit combinations expressed in Xenopus oocytes, despite the wide use of this heterologous expression system in structure–function studies and drug discovery. Thus, the aim of this study was to conduct a systematic characterization of the potency of GABA at 43 human recombinant GABAA receptor combinations expressed in Xenopus oocytes using the two-electrode voltage clamp technique. The results show that the α-subunits and to a lesser extent, the β-subunits influence GABA potency. Of the binary and ternary combinations with and without the γ2L subunit, the α6/γ2L-containing receptors were the most sensitive to GABA, while the β2- or β3-subunit conferred higher sensitivity to GABA than receptors containing the β1-subunit with the exception of the α2β1γ2L and α6β1γ2L subtypes. Of the δ-subunit containing GABAA receptors, α4/δ-containing GABAA receptors displayed highest GABA sensitivity, with mid-nanomolar concentrations activating α4β1δ and α4β3δ receptors. At α4β2δ, GABA had low micromolar activity.  相似文献   

10.
Heavy meromyosin subfragment-1 and its trinitrophenylated derivative 3ave been chromatographed on immobilized ATP, ADP and adenosine 5′-(β,γ-imino)triphosphate affinity chromatography columns, in the presence and in the absence of Mg2+ or Ca2+. Splitting of bound ATP was followed by using [γ-3 2P]ATP columns. While the divalent cations had little effect on the chromatographic pattern in the case of the non-hydrolyzable ADP and adenosine 5′(β,γ-imino)triphosphate, they catalyzed splitting in the case of ATP and at the same time strongly increased the affinity of adsorption of the proteins. The protein-elution and the Pi-release patterns were different for the native and the modified proteins. These results have been interpreted in terms of protein binding to the various intermediates of the ATP hydrolysis reaction.  相似文献   

11.
1. In rat ileal smooth muscle both adenosine and ATP at 10−4 M significantly enhanced spontaneous mechanical activity. The excitatory actions of adenosine were blocked by the P1 receptor antagonist 8-phenyltheophylline and the excitatory effects of ATP were significantly reduced by the P2 receptor antagonist quinidine.2. The P2 receptor desensitizer α,β-methylene-ATP was without effect on ACh responses nor did the stable analogue β,gg-methylene-ATP exert any effect on spontaneous mechanical activity.3. Pretreatment with adenosine caused a dose-dependent enhancement of K-induced contractures in the ileum. Low adenosine concentrations slightly inhibited and high concentrations slightly enhanced ACh-induced contractures in the ileum.4. ATP potentiated the phasic component of the ileal K-induced contracture but strongly inhibited tonic force at high concentrations. This agent slightly inhibited the phasic component of the ACh-induced contracture while strongly inhibiting ACh-induced tonic force.5. α,β-methylene-ATP inhibited ileal muscle ACh induced contractures while it potentiated both phasic and tonic K-induced contractures. β, γ-methylene ATP inhibited ACh-induced contractures but it enhanced K-induced phasic contractures while inhibiting K-induced tonic force.6. The results of this study suggest that rat ileum may contain the A1 subtype of the P1 receptor but the evidence for a P2 receptor subtype is conflicting despite the inhibition of ATP actions by quinidine.7. The inhibition of K- and ACh-induced tonic force suggests that adenosine and ATP interactions with ileal smooth muscle may inactivate slow voltage-dependent calcium channels leading to EC uncoupling.  相似文献   

12.
Six analogs of tryptophanyl-adenylate, which is an important intermediate in the enzymatic synthesis of Trp-tRNATrp, have been prepared. Four compounds, tryptophanyl-8-bromoadenylate, tryptophanyl-2-chloroadenylate, tryptophanyl-7-deazaadenylate and tryptophanyl-(N6-methyl)adenylate, contain modifications in the nucleobase moiety, while tryptophanyl-2′ deoxyadenylate and tryptophanyl-3′-deoxyadenylate were modified in the carbohydrate part of the molecule. Three of these analogs (2-chloro, 7-deaza, 2′-deoxy analogs) as well as ATP analogs with the same modifications were substrates in the aminoacylation reaction; three analogs (8-bromo, N6-methyl, 3′-deoxy analogs) were inactive as well as the corresponding ATP analogs. In contrast, in the ATPPPi pyrophosphate exchange in the absence of tRNA all ATP analogs except 8-bromo-ATP were substrates. However, the presence of tRNA reduced the number of ATP analogs being substrates to that number of substrates observed in the aminoacylation. Therefore, it can be concluded that the presence of tRNA is responsible for an increase of specificity. The diastereomers of adenosine 5′-O-(3-thiotriphosphate) (ATPαS), adenosine 5′-O-(2-thiotriphosphate) (ATPβS), and adenosine 5′-O-(3-thiotriphosphate) (ATPγS) were tested with various divalent metals as substrates in the pyrophosphate exchange reaction. The Sp diastereomer of ATPαS is a substrate with Mg2+, whereas the Rp diastereomer is inactive. Both diastereomers are inactive in the presence of Zn2+. Since Zn2+ binds preferentially to the sulfur atom, an explanation of these results is that the Mg2+ ion is not bound to the α-phosphate. Only the Sp isomer of the diastereomers of ATPβS acts as substrate in the presence of Mg2+. The stereospecificity becomes reversed in the presence of Zn2+. ATPγS acts as substrate with both Mg2+ and Zn2+. These results suggest that the Δ isomer of the β,γ-bidentate ATP-Mg2+ complex is the substrate for this enzyme. From these results a molecular model of the ATP-Mg2+ complex in the active site can be derived in which the nucleotide is attached to the enzyme by interactions in which the 3′-OH and 6-NH2 group, one oxygen atom of the α-phosphorus atom, and the coordinated magnesium cation are all involved.  相似文献   

13.
In order to get insight into the origin of apparent negative cooperativity observed for F1-ATPase, we compared ATPase activity and ATPMg binding of mutant subcomplexes of thermophilic F1-ATPase, α(W463F)3β(Y341W)3γ and α(K175A/T176A/W463F)3β(Y341W)3γ. For α(W463F)3β(Y341W)3γ, apparent Km's of ATPase kinetics (4.0 and 233 μM) did not agree with apparent Km's deduced from fluorescence quenching of the introduced tryptophan residue (on the order of nM, 0.016 and 13 μM). On the other hand, in case of α(K175A/T176A/W463F)3β(Y341W)3γ, which lacks noncatalytic nucleotide binding sites, the apparent Km of ATPase activity (10 μM) roughly agreed with the highest Km of fluorescence measurements (27 μM). The results indicate that in case of α(W463F)3β(Y341W)3γ, the activating effect of ATP binding to noncatalytic sites dominates overall ATPase kinetics and the highest apparent Km of ATPase activity does not represent the ATP binding to a catalytic site. In case of α(K175A/T176A/W463F)3β(Y341W)3γ, the Km of ATPase activity reflects the ATP binding to a catalytic site due to the lack of noncatalytic sites. The Eadie-Hofstee plot of ATPase reaction by α(K175A/T176A/W463F)3β(Y341W)3γ was rather linear compared with that of α(W463F)3β(Y341W)3γ, if not perfectly straight, indicating that the apparent negative cooperativity observed for wild-type F1-ATPase is due to the ATP binding to catalytic sites and noncatalytic sites. Thus, the frequently observed Km's of 100-300 μM and 1-30 μM range for wild-type F1-ATPase correspond to ATP binding to a noncatalytic site and catalytic site, respectively.  相似文献   

14.
1. The effects of purines on denervated melanophores of the medaka were studied under experimental conditions in which melanosomes were aggregated by norepinephrine or lithium ion beforehand.2. Adenosine and its derivatives caused melanosome dispersion; the order of potency for the series was; NECA > adenosine > ATP > 2-chloroadenosine > PIA > CHA > cyclic AMP.3. 8-Phenyltheophylline, a potent purinoceptor antagonist, blocked the effect of purines and caused a rightward shift of the adenosine and analog concentration-response curves.4. 8-Br cyclic AMP also caused melanosome dispersion but its action was not blocked by 8-phenyladenosine. Dibutyryl cyclic AMP, cyclic GMP, dibutyryl cyclic GMP, and 8-br cyclic GMP were all ineffective.5. The effect of adenosine was immediately eliminated by adenosine deaminase but, actions of NECA, AMP, ADP, ATP, and cyclic AMP were not.6. Forskolin, a potent activator of adenylate cyclase, mimicked the action of adenosine.7. It is concluded that adenosine and its derivatives mediate their melanosome-dispersing effect via a P1-purinoceptor that displays characteristics of the A2-subtype and that adenine nucleotides directly activate the A2-receptor without conversion to adenosine.  相似文献   

15.
ATP-Activated Nonselective Cation Current in NG108-15 Cells   总被引:5,自引:0,他引:5  
Abstract: ATP (1 mM) induced a biphasic increase in intracellular Ca2+ concentration ([Ca2+]i), i.e., an initial transient increase decayed to a level of sustained increase, in NG108-15 cells. The transient increase was inhibited by a phospholipase C inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), whereas the sustained increase was abolished by removal of external Ca2+. We examined the mechanism of the ATP-elicited sustained [Ca2+]i increase using the fura-2 fluorescent method and the whole-cell patch clamp technique. ATP (1 mM) induced a membrane current with the reversal potential of 12.5 ± 0.8 mV (n = 10) in Tyrode external solution. The EC50 of ATP was ~0.75 mM. The permeability ratio of various cations carrying this current was Na+ (defined as 1) > Li+ (0.92 ± 0.01; n = 5) > K+ (0.89 ± 0.03; n = 6) > Rb+ (0.55 ± 0.02; n = 6) > Cs+ (0.51 ± 0.01; n = 5) > Ca2+ (0.22 ± 0.03; n = 3) > N-methyl-d -glucamine (0.13 ± 0.01; n = 5), suggesting that ATP activated a nonselective cation current. The ATP-induced current was larger at lower concentrations of external Mg2+. ATP analogues that induced the current were 2-methylthio-ATP (2MeSATP), benzoylbenzoic-ATP, adenosine 5′-thiotriphosphate (ATPγS), and adenosine 5′-O-(2-thiodiphosphate), but not adenosine, ADP, α,β-methylene-ATP (AMPCPP), β,γ-methylene-ATP (AMPPCP), or UTP. Concomitant with the current data, 2MeSATP and ATPγS, but not AMPCPP or AMPPCP, increased the sustained [Ca2+]i increase. We conclude that ATP activates a class of Ca2+-permeable nonselective cation channels via the P2z receptor in NG108-15 cells.  相似文献   

16.
Abstract

The P2x-receptor mediating contraction of the rabbit ear artery is characterised by the following agonist potency order: D-αβmethyleneATP < L-βγmethyleneATP < D-βγmethyleneATP ≥ 2-MeSATP < ATP.  相似文献   

17.
《BBA》1985,809(1):117-124
By employing phosphorothioate analogs of ATP in the presence of Mg2+ and Mn2+ as substrates in ATP hydrolysis, catalyzed by light and dithiothreitol-activated chloroplast ATPase, the structure of the reactive metal-nucleotide complex has been determined. Mg(SP)-ATPαS and Mn(SP)-ATPαS, in contrast to the corresponding RP-isomers, are substrates in ATP hydrolysis. No metal-dependent change of specificity was observed. Mg(SP)-ATPβS, having the Δ configuration, and Mn(SP)-ATPβS and Mn(RP)-ATPβS, consisting of a mixture of Δ and Λ configurations, were better substrates than Mg(RP)-ATPβS, the isomer with almost exclusive Λ chelate structure. The same results were obtained when the competitive effect of the analogs on hydrolysis of ATP was studied. The competitive effect of the diastereomers on tight binding of ATP by membrane-associated CF1, was investigated in the presence of Mg2+ and Cd2+. Mg(SP)-ATPβS and Cd(RP)-ATPβS, which both exhibit Δ structure, were more effective than Mg(RP)-ATPβS and Cd(SP)-ATPβS, showing the Λ configuration. No metal-dependent change of the preferred SP-ATPαS specificity was detected. These results permit the conclusion that the actual substrate used by chloroplast ATPase is the β,γ-Δ-bidentate nucleotide chelate. Moreover, a stereospecific direct ionic interaction between the protein and α-phosphate is likely.  相似文献   

18.
1. Purine compounds were examined for pharmacological activity in the rectum and oesophagus of the garden snail Helix aspersa.2. In the rectum, adenosine, AMP, ADP and ATP (above 10μM) and acetylcholine (above 1 nM) consistently caused concentration-dependent contractions. The slope of the dose-response curve for ADP in the rectum was significantly steeper than for the other purine compounds. The contractile responses to the nucleotides and acetylcholine, but not adenosine, were selectively potentiated by physostigmine (1μM). Atropine (1 μM) and tubocurarine (30 μM) failed to block the responses to the purines or acetylcholine.3. In the oesophagus, adenosine, AMP, ADP and ATP (above 10 μM) and acetylcholine (above 1 nM) caused concentration-dependent contractions that were antagonised by atropine (l μM). Tubocurarine (30 μM) failed to block the responses to the purine compounds or acetylcholine. Physostigmine (1 μM) potentiated the responses to ADP and acetylcholine but not ATP, AMP or adenosine.4. In both the rectum and the oesophagus, the synthetic analogues of purine compounds inclucling 2-chloroadenosine, α, β -methylene ATP and 2-methylthio ATP were inactive up to a concentration of 100 μM.5. Electrical field stimulation of the rectum and oesophagus produced consistent contractions which were unaffected by atropine (1 μM), tubocurarine (30 μM) or physostigmine (1 μM). These responses were not modulated by any of the purine compounds or their stable analogues.6. The responses obtained appear novel even within known invertebrate purinergic systems, suggesting a differentiation of purinoceptor subtypes in this species. There is evidence in the rectum for AMP, ADP and ATP causing the release of acetylcholine; physostigmine potentiated responses to AMP, ADP and ATP, but not to adenosine. This indicates that activity may be mediated via different types of purinoceptors, perhaps equivalent to the P1- and P2-purinoceptors identified in vertebrates.  相似文献   

19.
Abstract

The basis of the established subdivision of receptors for purines into P1-purinoceptors for adenosine and P2-purinoceptors for ATP and ADP is considered, as well as the proposals for subdivision of P1-purinoceptors into A1 and A2 subtypes and of ATP receptors into P2x-, P2y- P2z- and P2T-purinoceptor subtypes. The distribution and roles of these receptor subtypes in muscles, nerves and other tissues, including endothelial and epithelial cells, hepatocytes, blood cells, fibroblasts and astrocytes, are discussed.  相似文献   

20.
31P-Fourier transform NMR spectroscopy (40.5 MHz) has been employed to investigate the mode of binding of adenosine 5′-triphosphate (ATP) to rabbit muscle G-actin in the presence of calcium in the pH range 6.5 to 10.5. Line width measurements reveal that the nucleotide binds tightest around pH=8.5. Spin lattice (T1) and spin-spin (T2) relaxation times of each of the three phosphorus atoms of bound ATP demonstrate the prime importance of Pβ and Pγ in ATP binding to G-actin through a calcium bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号