首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.  相似文献   

2.
The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility.  相似文献   

3.
4.
Taking the Myc is bad for Theileria   总被引:1,自引:0,他引:1  
It is commonly acknowledged that intracellular parasites manipulate the survival pathways of the host cells to their own ends. Theileria are masters of this because they invade bovine leukocytes and immortalize them. Host-cell survival depends on the presence of live parasites, and parasite death results in the leukocyte undergoing programmed cell death. The parasite, therefore, activates several anti-apoptotic pathways in host cells to ensure its own survival. In B cells that are infected by Theileria parva, one of the main mechanisms involves the induction of c-Myc and the subsequent activation of the anti-apoptotic protein Mcl-1. Activation of Myc might occur in other types of leukocyte that are infected by Theileria and in other host cells that are infected with different parasites.  相似文献   

5.
The theilerioses can be separated on the basis of their principal pathogenic features, into a lymphoproliferative group caused by Theileria parva and T. annulata in cattle, and T. hirci in goats and sheep, and a haemoproliferative group caused by T. sergenti and T. mutans both in cattle. In the former group, proliferation of parasites within lymphoid cells followed by lymphodestruction are the main pathogenic features; whereas in the latter group, invasion and destruction of erythrocytes, causing anaemia, are more important. In addition, a number of other theilerial parasites which cause mild or inapparent infections, are found in domestic livestock. This review focuses on T. parva, the causative agent of East Coast fever (ECF) in cattle in East and Central Africa, because it is the most pathogenic species and the immunology of ECF has been more intensively studied than that of the other theilerioses.  相似文献   

6.
The intracellular protozoan parasites Theileria parva and T. annulata transform the cells they infect, inducing uncontrolled proliferation. This is not a trivial event as, in addition to permanently switching on the complex pathways that govern all steps of the cell cycle, the built-in apoptotic safety mechanisms that prevent 'illegitimate' cell replication also need to be inactivated. Recent experiments show that the NF-kappa B and phosphoinositide 3-kinase (PtdIns-3K) pathways are important participants in the transformation process. I kappa B kinase (IKK), a pivotal kinase complex in the NF-kappa B pathway, is recruited to the parasite surface where it becomes activated. The PtdIns-3K/Akt/PKB pathway is also constitutively activated in a parasite-dependent manner, but contrary to IKK, activation is probably not triggered by direct association with the parasite.  相似文献   

7.
Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.  相似文献   

8.
The fine structure of Theileria-lymphoblast relationship was studied using cultured bovine lymphoblastoid cells infected with Theileria parva, T lawrencei, or T. annulata. The major findings of this study were: (1) the presence of a very active Golgi complex with the associated annulate lamelae; (b) the presence of cytoplasmic microtubules which joined the parasites and host cell centriole during lymphoblast mitosis; and (c) the absence of morphological evidence to suggest that the host cell developed a reaction to the parasitic presence. The significance of these findings is discussed.  相似文献   

9.
The economic importance of bovine theilerioses has prompted several new approaches to understanding the diseases in the hope of developing more efficient methods of control. Most Theileria species that infect cattle cause a lymphoproli ferative disease. Sporozoites, injected into the host bloodstream by the tick vectors, rapidly invade host lymphocytes and stimulate rapid division of infected cells. As these rupture, merozoites are released which invade red blood cells ready to infect feeding ticks again. The process by which Theileria parasites can control host lymphocytes, and induce them to divide in synchrony with the parasites themselves, is poorly understood but seems to be the key to pathogenesis. In this article, Michael Dyer and Andrew Tait discuss the possible mechanisms of cellular control in the light of recent work revealing sequences homologous to oncogenes in the DNA of T. annulata.  相似文献   

10.
Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed susceptibility, and strain virulence.  相似文献   

11.
Bovine cells infected with macroschizonts of the protozoan parasites Theileria annulata and Theileria parva formed solid tumours when injected into irradiated Balb/c and irradiated Balb/c nude mice. T. annulata tumours grew more vigorously than T. parva tumours, when initiated with similar doses of infected cells in mice exposed to the same doses of gamma-irradiation. In irradiated Balb/c mice, tumours of both species of parasites began to regress 2-3 weeks after injection of cells but grew without regression in irradiated Balb/c nude mice. Haemorrhage and necrosis of tumours, induced by macrophages and neutrophils, were seen in both mouse strains but were insufficient to cause regression in Balb/c nude mice. Theileria-infected bovine cells failed to establish in C57 beige mice, which lack functional natural killer (NK) cells. Flow cytometry, using monoclonal antibodies to murine leukocyte/lymphocyte antigens, showed that the radiation dose required to allow establishment of T. annulata tumours in Balb/c mice caused a severe depletion of splenic lymphocytes. B cells, helper T and cytotoxic T cells showed differing levels of susceptibility to irradiation. The presence of a tumour promoted the recovery of lymphocyte populations: this recovery was accompanied by destruction of the tumour.  相似文献   

12.
The role of the accessory cell in optimizing T cell proliferative responses to mitogens is a well known but poorly understood phenomenon. To further dissect the function of the accessory cell in allowing T cell proliferation, we compared mitogen-induced c-myc, interleukin 2 (IL 2), and IL 2 receptor gene expression in peripheral blood mononuclear cells (PBMC) and in T cells rigorously depleted of accessory cells through differential adherence and anti-Dr (anti-class II major histocompatibility antigen) monoclonal antibody complement-directed cytotoxicity. In cultures stimulated with phytohemagglutinin (PHA), a mitogen that requires accessory cells to induce T cell proliferation, expression of all measured genes was accessory cell dependent, since accumulation of their mRNA in PBMC was greater than that in cultures depleted of accessory cells. These genes varied in their accessory cell dependence, with IL 2 expression most dependent, c-myc expression least dependent, and IL 2 receptor expression intermediate in dependency. Use of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or ionomycin, mitogens that stimulate T cell proliferation independent of accessory cells, induced equal levels of gene expression in PBMC and in T cells depleted of accessory cells. These results suggest that PHA-stimulated T cells are dependent on an accessory cell signal(s) for optimal expression of the genes for c-myc, IL 2, and IL 2 receptor, and for proliferation. In addition, this signal(s) appears to be delivered early in the course of T cell activation events, since it can be bypassed by mitogens that directly activate protein kinase C (TPA) or induce calcium translocation (ionomycin). In addition, these data provide further evidence that expression of the c-myc protooncogene is insufficient for T cell mitogenesis, since PHA-induced accumulation of c-myc mRNA was only partially accessory cell dependent, whereas proliferation was completely accessory-cell dependent.  相似文献   

13.
Baby hamster kidney (BHK) cells were fused with Theileria parva-infecled bovine lymphoid cells, using u.v. light-inactivated Sendai virus. The resultant hamster/bovine heterokaryons were shown to be infected with T. parva. In some cases parasites were detected in cells which apparently contained only BHK nuclei.  相似文献   

14.
The woylie or brush-tailed bettong (Bettongia penicillata) is a medium-sized native Australian marsupial that has undergone a dramatic decline in numbers in recent years. Trypanosome parasites have been identified in the woylie but little is known about the prevalence and clinical impact of other haemoprotozoan parasites in these marsupials. In the present study, the occurrence and molecular phylogeny of a piroplasm was studied in woylies from six different sites in Western Australia (WA). Blood samples were screened by PCR at the 18S rRNA locus and 80.4% (123/153) of the blood samples were positive for piroplasm DNA. Sequence and phylogenetic analysis of 12 of these positives identified them as Theileria penicillata, and sequencing of cloned PCR products indicated that no other species of Theileria were present. Infected woylies had a lower body weight but microscopic evaluation of the blood films indicated that T. penicillata did not appear to cause red cell injury or anaemia. Further studies are required to determine the clinical significance of T. penicillata in woylies.  相似文献   

15.
The role of the transferrin receptor in human B lymphocyte activation   总被引:11,自引:0,他引:11  
Transferrin receptors are expressed on proliferating cells and are required for their growth. Transferrin receptors can be detected after, but not before, mitogenic stimulation of normal peripheral blood T and B cells. T cells demonstrate a functional requirement for transferrin receptors in the activation process. These receptors, in turn, are induced to appear by T cell growth factor (interleukin 2). In the experiments reported here, we examined the regulation of transferrin receptor expression on activated human B cells and whether these receptors are necessary for activation to occur. Activation was assessed by studying both proliferation and immunoglobulin secretion. We determined that transferrin receptor expression on B cells is regulated by a factor contained in supernatants of mitogen-stimulated T cells (probably B cell growth factor). This expression is required for proliferation to occur, because antibody to transferrin receptor (42/6) blocks B cell proliferation. Induction of immunoglobulin secretion, however, although dependent on phytohemagglutinin-treated T cell supernatant, is not dependent on transferrin receptor expression and can occur in mitogen-stimulated cells whose proliferation has been blocked by anti-transferrin receptor antibody. These findings support a model for B cell activation in which mitogen (or antigen) delivers two concurrent but distinct signals to B cells: one, dependent on B cell growth factor and transferrin receptor expression, for proliferation; and a second, dependent on T cell-derived factors and not requiring transferrin receptors, which leads to immunoglobulin secretion.  相似文献   

16.
The accessory cell requirement for mitogen-induced T lymphocyte proliferation has been investigated by using a population of guinea pig lymph node lymphocytes enriched in T cells and markedly depleted of macrophages and B lymphocytes. We have found that effective phytohemagglutinin-induced proliferation of T cells is dependent on the participation of accessory cells. Augmentation of PHA responsiveness was noted when cultural conditions were manipulated to increase cell density, suggesting that physical proximity between T cell and accessory cell is required for efficient triggering. Both syngeneic and allogeneic macrophages, as well as syngeneic fibroblasts, serve as accessory cells in this response whereas polymorphonuclear leukocytes or thymocytes do not. Thus, although PHA-induced T lymphocyte proliferation requires accessory cells, the specificity of these cells is strikingly less stringent than for antigen-mediated triggering of immune guinea pig T cells, a response which is dependent upon participation of syngeneic macrophages.  相似文献   

17.
Theileria parva-specific bovine BoT4+ Th cell clones were used to characterize Ag associated with T. parva schizont-infected lymphoblastoid cells. All of the clones tested responded to cells infected with the immunizing (Muguga) as well as heterologous stocks of T. parva, indicating that the T cells are specific for an Ag shared by several geographically diverse parasites. The response was apparently MHC-restricted, and induced by Ag expressed on the infected cell surface. In the presence of autologous APC, the clones were also stimulated by a soluble high speed supernatant (HSS), but not by a schizont membrane-enriched, subcellular fraction prepared from homogenates of infected cells. The clones produced IFN-gamma and T cell growth factor in response to HSS. The soluble Ag was absent in cells from which schizonts had been eliminated by treatment with the anti-theilerial drug, parvaquone. Fractionation of HSS by hydroxylapatite chromatography revealed two antigenic peaks that separated from the majority of the protein. Fractionation of HSS by gel filtration with the use of HPLC revealed several peaks of activity ranging in Mr from 270 kDa to less than 5 kDa. Further fractionation of HSS by both hydroxylapatite chromatography and gel filtration yielded three major peaks of activity (Mr 43, 12, 4.2 kDa). We conclude that a T cell-dependent schizont-associated soluble Ag is also expressed on the surface of T. parva-infected cells.  相似文献   

18.
Theileria parasites transform bovine leukocytes and induce uncontrolled lymphoproliferation only in the macroschizont stage of their life cycle. The isolation of highly purified stage-specific parasite RNA and proteins is an essential prerequisite when studying the Theileria-host relationship. We therefore improved a protocol based on the cytolytic bacterial toxin aerolysin by taking advantage of the microtubule inhibitor nocodazole. In this report we describe that nocodazole-mediated separation of the parasite from the host cell microtubule network was used with success to improve quantity and quality of purified parasites. We furthermore show that nocodazole is a useful tool to study cell cycle checkpoints due to its capacity to induce reversible cell cycle arrest in Theileria-infected B cells.  相似文献   

19.
In order to examine the taxonomic relationship of Theileria sp. of Asian buffalo to the benign Theileria spp. of cattle, we sequenced and compared the major piroplasm protein (p33/34) genes of these parasites. The two consensus sequences determined for the buffalo parasite were of the same length (852 bp) and showed >80% identity with the sequences of the homologous genes (849 bp) in the cattle parasites. Alignment of the inferred aa sequences with those of Theileria sergenti and Theileria buffeli predicted that there is an insertion of a single residue at the N-terminus in the inferred polypeptide of the buffalo parasite. Phylogenetic analyses based on the aa sequences suggested that Theileria sp. of the Asian buffalo should be classified within the benign Theileria parasite group as a separate species from the cattle parasites. Based on this, we propose a rearrangement of the currently used classification for the benign Theileria species in cattle and Asian buffalo.  相似文献   

20.
The classification of the benign species of Theileria of cattle is very confusing Representatives of this group of parasites appear worldwide, and are known as T. sergenti in Japan, T. buffeli in Australia and T. orientalis elsewhere. Consequently, these parasites are frequently referred to as the T. sergenti/buffeli/orientalis group. Kozo Fujisaki, Shin-ichiro Kawazu and Tsugihiko Kamio here argue that the Australian T. buffeli and British T. orientalis belong to one and the same species, and that the Japanese T. sergenti is a separate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号