首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lyme disease, caused by the tick-borne spirochete Borrelia burgdorferi (Bb), is a multisystem illness, affecting many organs, such as the heart, the nervous system, and the joints. Months after Bb infection, approximately 60% of patients experience intermittent arthritic attacks, a condition that in some individuals progresses to chronic joint inflammation. Although mice develop acute arthritis in response to Bb infection, the joint inflammation clears after 2 wk, despite continuous infection, only very rarely presenting with chronic Lyme arthritis. Thus, the lack of an animal system has so far prevented the elucidation of this persistent inflammatory process that occurs in humans. In this study, we report that the majority of Bb-infected CD28-/- mice develop chronic Lyme arthritis. Consistent with observations in chronic Lyme arthritis patients, the infected mutant, but not wild-type mice present recurring monoarticular arthritis over an extended time period, as well as anti-outer surface protein A of Bb serum titers. Furthermore, we demonstrate that anti-outer surface protein A Abs develop in these mice only after establishment of chronic Lyme arthritis. Thus, the Bb-infected CD28-/- mice provide a murine model for studying chronic Lyme arthritis.  相似文献   

3.
We determined the antibody response against the Ixodes dammini spirochete in Lyme disease patients by indirect immunofluorescence and an enzyme-linked immunosorbent assay (ELISA). The specific IgM response became maximal three to six weeks after disease onset, and then declined, although titers sometimes remained elevated during later disease. Specific IgM levels correlated directly with total serum IgM. The specific IgG response, often delayed initially, was nearly always present during neuritis and arthritis, and frequently remained elevated after months of remission. Although results obtained by indirect immunofluorescence and the ELISA were similar, the ELISA was more sensitive and specific. Cross-reactive antibodies from patients with other spirochetal infections were blocked by absorption of sera with Borrelia hermsii, but titers of Lyme disease sera were also decreased. To further characterize the specificity of the humoral immune response against the I. dammini spirochete, 35S-methionine-labeled spirochetal antigens were identified by immunoprecipitation with sera from Lyme arthritis patients. These polypeptides had molecular weights of 62, 60, 47, 37, 22, 18, and 15 kDa, and were not recognized by control sera. We conclude that the ELISA, without absorption, is the best method to assay the humoral immune response in Lyme disease, and we have identified methionine-containing spirochetal polypeptides that may be important in Lyme arthritis.  相似文献   

4.
Although the causative agent of Lyme disease is definitively known to be the tick-borne spirochete, Borrelia burgdorferi, the etiology of chronic joint inflammation that ensues in a subset of patients remains less well understood. Persistence of arthritis after apparent eradication of the spirochete suggests an autoimmune reaction downstream of the original bacterial infection. We have generated recombinant Ab probes from synovial lesions within affected arthritic joints in an attempt to recapitulate disease-relevant Ag-binding specificities at the site of injury. Using this panel of intra-articular probes, as well as Ab fragments derived from patient peripheral blood, we have identified cytokeratin 10, present in synovial microvascular endothelium, as a target ligand and a putative autoantigen in chronic, antibiotic treatment-resistant Lyme arthritis. Furthermore, there is cross-reactivity between cytokeratin 10 and a prominent B. burgdorferi Ag, outer surface protein A. Release of the self protein in the context of inflammation-induced tissue injury and the resulting in situ response to it could set in motion a feed-forward loop, which amplifies the inflammatory process, thereby rendering it chronic and self-perpetuating, even in the absence of the inciting pathogen.  相似文献   

5.
After infection with Borrelia burgdorferi, humans and mice under certain conditions develop arthritis. Initiation of inflammation is dependent on the migration of innate immune cells to the site of infection, controlled by interactions of a variety of adhesion molecules. In this study, we used the newly synthesized compound S18407, which is a prodrug of the active drug S16197, to analyze the functional importance of alpha4beta1-dependent cell adhesion for the development of arthritis and for the antibacterial immune response. S16197 is shown to interfere specifically with the binding of alpha4beta(1 integrin to its ligands VCAM-1 and fibronectin in vitro. Treatment of B. burgdorferi-infected C3H/HeJ mice with the alpha4beta1 antagonist significantly ameliorated the outcome of clinical arthritis and the influx of neutrophilic granulocytes into ankle joints. Furthermore, local mRNA up-regulation of the proinflammatory mediators IL-1, IL-6, and cyclooxygenase-2 was largely abolished. Neither the synthesis of spirochete-specific Igs nor the development of a Th1-dominated immune response was altered by the treatment. Importantly, the drug also did not interfere with Ab-mediated control of spirochete load in the tissues. These findings demonstrate that the pathogenesis, but not the protective immune response, in Lyme arthritis is dependent on the alpha4beta1-mediated influx of inflammatory cells. The onset of inflammation can be successfully targeted by treatment with S18407.  相似文献   

6.
In the K/BxN mouse model of arthritis, autoantibodies against glucose-6-phosphate isomerase cause joint-specific inflammation and destruction. We have shown using micro-positron emission tomography that these glucose-6-phosphate isomerase-specific autoantibodies rapidly localize to distal joints of mice. In this study we used micro-positron emission tomography to delineate the stages involved in the development of arthritis. Localization of Abs to the joints depended upon mast cells, neutrophils, and FcRs, but not on C5. Surprisingly, anti-type II collagen Abs alone did not accumulate in the distal joints, but could be induced to do so by coinjection of irrelevant preformed immune complexes. Control Abs localized to the joint in a similar manner. Thus, immune complexes are essential initiators of arthritis by sequential activation of neutrophils and mast cells to allow Abs access to the joints, where they must bind a target Ag to initiate inflammation. Our findings support a four-stage model for the development of arthritis and identify checkpoints where the disease is reversible.  相似文献   

7.
Borrelia burgdorferi invasion of mammalian joints results in genesis of Lyme arthritis. Other than spirochete lipids, existence of protein antigens, which are abundant in joints and participate in B. burgdorferi-induced host inflammatory response, is unknown. Here, we report that major products of the B. burgdorferi basic membrane protein (bmp) A/B operon that are induced in murine and human joints, possess inflammatory properties. Compared to the wild type B. burgdorferi, an isogenic bmpA/B mutant induced significantly lower levels of pro-inflammatory cytokines TNF-alpha and IL-1beta in cultured human synovial cells, which could be restored using bmpA/B-complemented mutants, and more directly, upon addition of recombinant BmpA, but not BmpB or control spirochete proteins. Non-lipidated and lipidated versions of BmpA induced similar levels of cytokines, and remained unaffected by treatment with lipopolysaccharide inhibitor, polymyxin B. The bmpA/B mutant was also impaired in the induction of NF-kappaB and p38 MAP kinase signaling pathways in synovial cells, which were activated by non-lipidated BmpA. These results show that a protein moiety of BmpA can induce cytokine responses in synovial cells via activation of the NF-kappaB and p38 MAP kinase pathways and thus, could potentially contribute to the genesis of Lyme arthritis.  相似文献   

8.
Activation of the innate immune system typically precedes engagement of adaptive immunity. Cells at the interface between these two arms of the immune response are thus critical to provide full engagement of host defense. Among the innate T cells at this interface are gammadelta T cells. gammadelta T cells contribute to the defense from a variety of infectious organisms, yet little is understood regarding how they are activated. We have previously observed that human gammadelta T cells of the Vdelta1 subset accumulate in inflamed joints in Lyme arthritis and proliferate in response to stimulation with the causative spirochete, Borrelia burgdorferi. We now observe that murine gammadelta T cells are also activated by B. burgdorferi and that in both cases the activation is indirect via TLR stimulation on dendritic cells or monocytes. Furthermore, B. burgdorferi stimulation of monocytes via TLR, and secondary activation of gammadelta T cells, are both caspase-dependent.  相似文献   

9.
Lyme arthritis is initiated by the tick-borne spirochete, Borrelia burgdorferi. In a subset of patients, symptoms do not resolve in response to standard courses of antibiotics. Chronic joint inflammation may persist despite spirochetal killing, suggesting an autoimmune etiology. The pathogenic mechanisms that sustain chronic Lyme arthritis have not been fully elucidated, although T cells are believed to play a role. The synovial lesion contains elements of a peripheral lymph node, with lymphoid aggregates, plasma cells and follicular dendritic cells. An analysis of activated cells at the site of injury could yield clues regarding the nature of the response and the identity of potential autoantigens. Using laser-capture microdissection, we have isolated plasma cells from the joint tissue of chronic Lyme arthritis patients who underwent synovectomy. Expressed Ig V regions were amplified by RT-PCR. A majority of isolated cells expressed gamma H chains, which is indicative of a class-switched response. There were a large number of nucleotide substitutions from germline, with a higher fraction of replacement mutations in the CDRs, suggesting a process of Ag-driven selection. We have recovered clonal clusters of cells containing identical junctions and V(D)J rearrangements. Sequence analysis reveals a hierarchy of shared somatic mutations between members of a given clone. Intraclonal diversity among plasma cells of close physical proximity points toward an ongoing process of diversification and affinity maturation, possibly driven by the chronic presence of an autoantigen.  相似文献   

10.
Lyme disease is a zoonosis caused by infection with bacteria belonging to the Borrelia burgdorferi species after the bite of an infected tick. Even though an infection by this bacterium can be effectively treated with antibiotics, when the infection stays unnoticed B. burgdorferi can persist and chronic post-treatment Lyme disease syndrome is able to develop. Although a cellular and humoral response is observed after an infection with the Borrelia bacteria, these pathogens are still capable to stay alive. Several immune evasive mechanisms have been revealed and explained and much work has been put into the understanding of the contribution of the innate and adaptive immune response. This review provides an overview with the latest findings regarding the cells of the innate and adaptive immune systems, how they recognize contribute and mediate in the killing of the B. burgdorferi spirochete. Moreover, this review also elaborates on the antigens that are expressed by on the spirochete. Since antigens drive the adaptive and, indirectly, the innate response, this review will discuss briefly the most important antigens that are described to date. Finally, there will be a brief elaboration on the escape mechanisms of B. burgdorferi with a focus on tick salivary proteins and spirochete antigens.  相似文献   

11.
In this study we investigated mechanisms involved in the chronic character of experimental collagen type II induced arthritis (CIA). We compared the knee joints of mouse strains which are prone to develop this autoimmune disease (DBA/1,B10RIII) with other nonsusceptible mouse strains (C57Bl/6,BALB/c) in their reaction to different stimuli: immune complexes (IC), zymosan and streptococcal cell walls (SCW). Inflammation was evaluated by(99m)Tc uptake measurements and in haematoxylin- and eosin-stained knee-joint sections. Passively induced immune complex mediated arthritis (ICA) in knee joints of C57Bl/6 and BALB/c mice, showed moderate cell influx at day 3, whereas at day 7 only minor amounts of inflammatory cells were observed. In contrast, in arthritic DBA/1 and, to a lesser extent, in B10.RIII joints, a tremendous cell influx was observed at day 3 and even at day 14 there was still significant synovitis. In contrast, if arthritis was elicited by intra-articular injection of zymosan or SCW in C57Bl/6 and DBA/1, the course of inflammation was similar in both strains and no chronic inflammation developed. In line with severe arthritis, chemotactic factor production was dramatically enhanced in ICA in DBA/1 mice, and a prolonged production of IL-1 was evident. When IL-1 was neutralized before or during the ICA using specific anti-IL-1alpha,beta antibodies, inflammation could be blocked completely. Single or multiple injection of IL-1 in the knee joint of C57Bl/6 or DBA/1 showed comparable inflammation, indicating that the chemotactic response per se is comparable in both strains. No prolonged production of IL-1 was found during zymosan or SCW arthritis. Selective removal of macrophages from the synovial intima prior to ICA induction (using clodronate-containing liposomes) prevented the onset of inflammation in C57Bl/6 and DBA/1 mice. It can be concluded that immune complexes, but not zymosan or SCW, cause a more severe and chronic arthritis in mouse strains which are susceptible for collagen type II autoimmune arthritis. This is due to higher and prolonged expression of IL-1 and chemotactic factors, caused by stimulation with immune complexes. The interaction of IC with lining macrophages probably plays a dominant role in development of chronicity.  相似文献   

12.
Lyme borreliosis is caused by multiple species of the spirochete bacteria Borrelia burgdorferi sensu lato. The spirochetes are transmitted by ticks to vertebrate hosts, including small‐ and medium‐sized mammals, birds, reptiles, and humans. Strain‐to‐strain variation in host‐specific infectivity has been documented, but the molecular basis that drives this differentiation is still unclear. Spirochetes possess the ability to evade host immune responses and colonize host tissues to establish infection in vertebrate hosts. In turn, hosts have developed distinct levels of immune responses when invaded by different species/strains of Lyme borreliae. Similarly, the ability of Lyme borreliae to colonize host tissues varies among different spirochete species/strains. One potential mechanism that drives this strain‐to‐strain variation of immune evasion and colonization is the polymorphic outer surface proteins produced by Lyme borreliae. In this review, we summarize research on strain‐to‐strain variation in host competence and discuss the evidence that supports the role of spirochete‐produced protein polymorphisms in driving this variation in host specialization. Such information will provide greater insights into the adaptive mechanisms driving host and Lyme borreliae association, which will lead to the development of interventions to block pathogen spread and eventually reduce Lyme borreliosis health burden.  相似文献   

13.
Lyme disease (LD) is the most prevalent tick-borne disease in Europe. LD is caused by the spirochete Borrelia burgdorferi. LD is a chronic disease which can attack a number of organs: skin, heart, brain, joints. Chronic, low-grade inflammation involves general production of pro-inflammatory cytokines and inflammatory markers and is a typical feature of aging. So far, the best method of diagnosing LD is a time-consuming and expensive two-stage serological method. The aim of our study was to evaluate the activity of two lysosomal exoglycosidases: α-fucosidase (FUC) and β-galactosidase (GAL) in the serum of patients with Lyme disease, as potential markers of LD. Due to the increasing number of patients with Lyme disease and a number of false results, new ways to diagnose this disease are still being sought. As elevated level of β-galactosidase is a manifestation of residual lysosomal activity in senescent cells, the increase in its activity in serum during chronic Lyme disease might be a marker of a potentially accelerated senescence process. The study was performed on serum taken from cubital veins of 15 patients with Lyme disease and eight healthy subjects (control group). FUC and GAL activity was measured by the method of Chatterjee et al. as modified by Zwierz et al. In the serum of patients with Lyme disease, GAL activity significantly increased (p = 0.029), and the activity of FUC had a tendency to increase (p = 0.153), compared to the control group. A significant increase in GAL activity in the serum of patients with Lyme disease indicates an increased catabolism of glycoconjugates (glycoproteins, glycolipids, proteoglycans) and could be helpful in the diagnosis of Lyme disease, although this requires confirmation in a larger group of patients. As GAL is the most widely used assay for detection of senescent cells, an elevated level of β-galactosidase might be a manifestation of accelerated senescence process in the course of Lyme disease.  相似文献   

14.
In a previous study, we described the development of a new specific serodiagnostic test for Lyme disease involving enzyme-linked immunosorbent assay and a synthetic peptide, OspC-I. The OspC-I peptide is derived from part of the outer surface protein C (OspC) amino acid sequence of Borrelia burgdorferi and is located in the region conserved among B. burgdorferi sensu stricto or sensu lato isolates. In this study, we demonstrate that sera containing antibodies against OspC-I from patients with early Lyme disease had borreliacidal activity against isolates of three genospecies of Lyme disease spirochete, B. burgdoreferi B31, B. garinii HPI and B. afzelii HT61. However, the borreliacidal activity against B. burgdorferi, which has not been isolated in Japan, was weaker than that against the other species. Vaccination of mice with OspC-I induced the production of anti-OspC-I antibodies in serum with borreliacidal activity. The immune mouse serum had significantly higher levels of borreliacidal activity against HP1 and HT61, than against B31. Neutralization of borreliacidal activity with anti-IgM antibodies showed that the borreliacidal activity of anti-OspC-I antibodies in serum was due to IgM. Furthermore. mice vaccinated with OspC-I were protected against challenge with HPI and HT61. but not fully protected against infection with B31. These results suggest that OspC-I is not only a specific antigen for use in serodiagnostic tests for Lyme disease, but is also a potential candidate for a Lyme disease vaccine in Japan.  相似文献   

15.
Borrelia burgdorferi possesses a collagenolytic activity   总被引:2,自引:0,他引:2  
Abstract Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi , an invasive spirochete. B. burgdorferi has a predilection for collagenous tissue and one major clinical manifestation of the disease is arthritis. We have identified a collagenolytic activity in B. burgdorferi detergent lysates using iodinated gelatin as well as iodinated pepsinized human collagen types II and IV as protein substrates. In addition, we describe several proteolytic activities in B. burgdorferi with molecular masses greater than 200 kDa on sodium dodecyl sulfate polyacrylamide gels containing copolymerized gelatin. We propose that the collagenolytic activity of B. burgdorferi has a role in invasion, in the pathogenesis of Lyme arthritis, and perhaps also in other manifestations of Lyme borreliosis.  相似文献   

16.
The enzyme 5-lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid into the leukotrienes, which are critical regulators of inflammation and inflammatory diseases, such as asthma and arthritis. Although leukotrienes are present in the synovial fluid of Lyme disease patients, their role in the development of Lyme arthritis has not been determined. In the current study, we used a murine model of Lyme arthritis to investigate the role 5-LO products might have in the development of this inflammatory disease. After infection of Lyme arthritis-susceptible C3H/HeJ mice with Borrelia burgdorferi, mRNA expression of 5-LO and 5-LO-activating protein was induced in the joints, and the 5-LO product leukotriene B(4) was produced. Using C3H 5-LO-deficient mice, we demonstrated that 5-LO activity was not necessary for the induction of Lyme arthritis, but that its deficiency resulted in earlier joint swelling and an inability to resolve arthritis as demonstrated by sustained arthritis pathology through day 60 postinfection. Although production of anti-Borrelia IgG was decreased in 5-LO-deficient mice, bacterial clearance from the joints was unaffected. Phagocytosis of B. burgdorferi and efferocytosis of apoptotic neutrophils was defective in macrophages from 5-LO-deficient mice, and uptake of opsonized spirochetes by neutrophils was reduced. These results demonstrate that products of the 5-LO metabolic pathway are not required for the development of disease in all models of arthritis and that caution should be used when targeting 5-LO as therapy for inflammatory diseases.  相似文献   

17.
A convergence of evidence from macroscopic, radiographic and histologic examination indicates that treponemal infection was present in the 16ST1 Tchefuncte Indian burial population, dated 500 B.C. to 300 A.D. Pattern and nature of lesions suggests that chronic infection induced by variants of the spirochete Treponema pallidum, causing endemic syphilis and/or yaws, resulted in third-stage osseous response. It is suggested that Tchefuncte Indians acquired partial immunity to treponemal infection by exposure to a variant of the related spirochete, Borrelia burgdorferi, the causative agent of Lyme disease. Partial immunity would help explain the relatively mild expression of the treponemal disease process in the 16ST1 skeletal population and the apparent absence of venereal syphilis. Presence of the Borrelia burgdorferi spirochete might be linked to a single incidence of juvenile rheumatoid arthritis. © 1994 Wiley-Liss, Inc.  相似文献   

18.
In order to evaluate the presence of specific IgG antibodies to Borrelia burgdorferi in patients with clinical manifestations associated with Lyme borreliosis in Cali, Colombia, 20 serum samples from patients with dermatologic signs, one cerebrospinal fluid (CSF) sample from a patient with chronic neurologic and arthritic manifestations, and twelve serum samples from individuals without clinical signs associated with Lyme borreliosis were analyzed by IgG Western blot. The results were interpreted following the recommendations of the Centers for Diseases Control and Prevention (CDC) for IgG Western blots. Four samples fulfilled the CDC criteria: two serum specimens from patients with morphea (localized scleroderma), the CSF from the patient with neurologic and arthritic manifestations, and one of the controls. Interpretation of positive serology for Lyme disease in non-endemic countries must be cautious. However these results suggest that the putative "Lyme-like" disease may correlate with positivity on Western blots, thus raising the possibility that a spirochete genospecies distinct from B. burgdorferi sensu stricto, or a Borrelia species other than B. burgdorferi sensu lato is the causative agent. Future work will focus on a survey of the local tick and rodent population for evidence of spirochete species that could be incriminated as the etiologic agent.  相似文献   

19.
Vascular extravasation, a key step in systemic infection by hematogenous microbial pathogens, is poorly understood, but has been postulated to encompass features similar to vascular transmigration by leukocytes. The Lyme disease spirochete can cause a variety of clinical manifestations, including arthritis, upon hematogenous dissemination. This pathogen encodes numerous surface adhesive proteins (adhesins) that may promote extravasation, but none have yet been implicated in this process. In this work we report the novel use of intravital microscopy of the peripheral knee vasculature to study transmigration of the Lyme spirochete in living Cd1d -/-mice. In the absence of iNKT cells, major immune modulators in the mouse joint, spirochetes that have extravasated into joint-proximal tissue remain in the local milieu and can be enumerated accurately. We show that BBK32, a fibronectin and glycosaminoglycan adhesin of B. burgdorferi involved in early steps of endothelial adhesion, is not required for extravasation from the peripheral knee vasculature. In contrast, almost no transmigration occurs in the absence of P66, an outer membrane protein that has porin and integrin adhesin functions. Importantly, P66 mutants specifically defective in integrin binding were incapable of promoting extravasation. P66 itself does not promote detectable microvascular interactions, suggesting that vascular adhesion of B. burgdorferi mediated by other adhesins, sets the stage for P66-integrin interactions leading to transmigration. Although integrin-binding proteins with diverse functions are encoded by a variety of bacterial pathogens, P66 is the first to have a documented and direct role in vascular transmigration. The emerging picture of vascular escape by the Lyme spirochete shows similarities, but distinct differences from leukocyte transmigration.  相似文献   

20.
Abstract Cell-free synovial fluid from patients with rheumatoid arthritis contains soluble and insoluble IgG-containing immune complexes which activate reactive oxidant production in human neutrophils. In this report we have measured the effects of inhibitors of signal transduction pathways on neutrophil activation by these complexes and also following activation by synthetic soluble and insoluble immune complexes made from human serum albumin (HSA) and anti-(HSA) antibodies. In all aspects studied, the soluble rheumatoid complexes and the soluble synthetic complexes were indistinguishable in the ways in which they activated neutrophils. Activation of reactive oxidant production in response to these soluble complexes was completely inhibited by pertussis toxin (indicating G-protein coupling of receptor occupancy), completely insensitive to staurosporine (indicating that oxidant production did not require protein kinase C activity), only marginally (<30%) inhibited by butanol (indicating that dependence upon activity of phospholipase D was minimal), and completely inhibited by chloracysine, an inhibitor of phospholipase A2. In contrast, activation of reactive oxidant production in response to the insoluble rheumatoid or insoluble synthetic immune complexes was largely pertussis toxin insensitive, inhibited by >50% by staurosporine, inhibited by >50% by butanol, and completely inhibited by chloracysine. These results show that the receptor-mediated signal transduction systems activated by the soluble and insoluble immune complexes are different. Because the soluble complexes activate a transient burst of reactive oxidant secretion from primed neutrophils, the mechanisms regulating either the release or the intracellular production of oxidants within rheumatoid joints are distinct and hence may be pharmacologically modified independently of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号