首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously identified a novel murine protein, AND-34, with a carboxyl-terminal domain homologous to Ras family guanine nucleotide exchange factors (GEFs), which bound to the focal adhesion docking protein p130(Cas). Work by others has implicated both the human homologue of AND-34, BCAR3, and human p130(Cas), BCAR1, in the resistance of breast cancer cells to the anti-estrogen tamoxifen. Here we report that AND-34 displays GEF activity on RalA, Rap1A, and R-Ras but not Ha-Ras GTPases in cells. In contrast to several other Ral-GEFs, the Ral GEF activity of AND-34 is not augmented by constitutively active Ha-Ras(Val-12), consistent with the absence of a detectable Ras-binding domain. Efficient binding to AND-34 required both the Src-binding domain and a flanking carboxyl-terminal region of p130(Cas). The p130(Cas)-binding site mapped to a carboxyl-terminal sequence within the AND-34 GEF domain. Overexpression of p130(Cas), but not an AND-34-binding mutant of p130(Cas), inhibited the Ral GEF activity of co-transfected AND-34. This work identifies a new potential function for p130(Cas) and a new regulatory pathway involved in the control of Ral, Rap, and R-Ras GTPases that may participate in the progression of breast cancer cells to tamoxifen resistance.  相似文献   

2.
NSP protein family members associate with p130Cas, a focal adhesion adapter protein best known as a Src substrate that integrates adhesion-related signaling. Over-expression of AND-34/BCAR3/NSP2 (BCAR3), but not NSP1 or NSP3, induces anti-estrogen resistance in human breast cancer cell lines. BCAR3 over-expression in epithelial MCF-7 cells augments levels of a phosphorylated p130Cas species that migrates more slowly on SDS-PAGE while NSP1 and NSP3 induce modest or no phosphorylation, respectively. Conversely, reduction in BCAR3 expression in mesenchymal MDA-231 cells by inducible shRNA results in loss of such p130Cas phosphorylation. Replacement of NSP3's serine/proline-rich domain with that of AND-34/BCAR3 instills the ability to induce p130Cas phosphorylation. Phospho-amino acid analysis demonstrates that BCAR3 induces p130Cas serine phosphorylation. Mass spectrometry identified phosphorylation at p130Cas serines 139, 437 and 639. p130Cas serine phosphorylation accumulates for several hours after adhesion of MDA-231 cells to fibronectin and is dependent upon BCAR3 expression. BCAR3 knockdown alters p130Cas localization and converts MDA-231 growth to an epithelioid pattern characterized by striking cohesiveness and lack of cellular projections at colony borders. These studies demonstrate that BCAR3 regulates p130Cas serine phosphorylation that is adhesion-dependent, temporally distinct from previously well-characterized rapid Fak and Src kinase-mediated p130Cas tyrosine phosphorylation and that correlates with invasive phenotype.  相似文献   

3.
PRAK, a novel protein kinase regulated by the p38 MAP kinase.   总被引:22,自引:2,他引:20       下载免费PDF全文
L New  Y Jiang  M Zhao  K Liu  W Zhu  L J Flood  Y Kato  G C Parry    J Han 《The EMBO journal》1998,17(12):3372-3384
We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo.  相似文献   

4.
A murine mAb, 7D3, was produced by fusion of spleen cells obtained from mice immunized with a rat thymic epithelial cell line, Tu-D3 and NS/1 myeloma cells. 7D3 antibody reacted with approximately 95% thymocytes, 17% spleen cells, less than 9% of mesenteric lymph node cells and 32% of bone marrow cells of rat origin. 7D3 also reacted with two rat thymic epithelial cell lines but not with a rat fibroblastic cell line. Immunochemical analysis demonstrated that 7D3 antibody recognized a single polypeptide with molecular weight of 80,000 in FTE cells and 80,000 to 96,000 in thymocytes. 7D3 antibody strongly inhibited the thymocyte binding to thymic epithelial cells. In addition, 7D3 antibody inhibited TPA-induced thymocyte aggregation. 7D3 negative rat thymic lymphoma cells bound to 7D3 positive thymic epithelial cells and this binding was inhibited by 7D3 antibody, indicating that a part of thymocyte-thymic epithelial cell binding was mediated by the interaction of 7D3 Ag and undefined ligand to 7D3.  相似文献   

5.
The p38 mitogen-activated protein kinases (MAPK) play a crucial role in stress and inflammatory responses and are also involved in activation of the human immunodeficiency virus gene expression. We have isolated the murine cDNA clones encoding p38-delta MAPK, and we have localized the p38-delta gene to mouse chromosome 17A3-B and human chromosome 6p21.3. By using Northern and in situ hybridization, we have examined the expression of p38-delta in the mouse adult tissues and embryos. p38-delta was expressed primarily in the lung, testis, kidney, and gut epithelium in the adult tissues. Although p38-delta was expressed predominantly in the developing gut and the septum transversum in the mouse embryo at 9.5 days, its expression began to be expanded to many specific tissues in the 12.5-day embryo. At 15.5 days, p38-delta was expressed virtually in most developing epithelia in embryos, suggesting that p38-delta is a developmentally regulated MAPK. Interestingly, p38-delta and p38-alpha were similar serine/threonine kinases but differed in substrate specificity. Overall, p38-delta resembles p38-gamma, whereas p38-beta resembles p38-alpha. Moreover, p38-delta is activated by environmental stress, extracellular stimulants, and MAPK kinase-3, -4, -6, and -7, suggesting that p38-delta is a unique stress-responsive protein kinase.  相似文献   

6.
Budding in Saccharomyces cerevisiae follows a genetically programmed pattern of cell division which can be regulated by external signals. On the basis of the known functional conservation between a number of mammalian oncogenes and antioncogenes with genes in the yeast budding pathway, we used enhancement of pseudohyphal budding in S. cerevisiae by human proteins expressed from a HeLa cDNA library as a morphological screen to identify candidate genes that coordinate cellular signaling and morphology. In this report, we describe the isolation and characterization of human enhancer of filamentation 1 (HEF1), an SH3-domain-containing protein that is similar in structure to pl30cas, a recently identified docking protein that is a substrate for phosphorylation by a number of oncogenic tyrosine kinases. In contrast to p130cas, the expression of HEF1 appears to be tissue specific. Further, whereas p130cas is localized predominantly at focal adhesions, immunofluorescence indicates that HEF1 localizes to both the cell periphery and the cell nucleus and is differently localized in fibroblasts and epithelial cells, suggesting a more complex role in cell signalling. Through immunoprecipitation and two-hybrid analysis, we demonstrate a direct physical interaction between HEF1 and p130cas, as well as an interaction of the SH3 domain of HEF1 with two discrete proline-rich regions of focal adhesion kinase. Finally, we demonstrate that as with p130cas, transformation with the oncogene v-abl results in an increase in tyrosine phosphorylation on HEF1, mediated by a direct association between HEF1 and v-Abl. We anticipate that HEF1 may prove to be an important linking element between extracellular signalling and regulation of the cytoskeleton.  相似文献   

7.
The bone marrow stroma consists of a heterogeneous population of cells which participate in osteogenic, adipogenic, and hematopoietic events. The murine stromal cell line, BMS2, exhibits the adipocytic and osteoblastic phenotypes in vitro. BMS2 differentiation was examined in response to cytokines which share the gp130 signal transducing protein within their receptor complex. Four of the cytokines (interleukin 6, interleukin 11, leukemia inhibitory factor, and oncostatin M) inhibited hydrocortisone-induced adipocyte differentiation in a dose dependent manner based on lipid accumulation and lipoprotein lipase enzyme activity. Inhibition occurred only when the cytokines were present during the initial 24 h of the induction period; after 48 h, their effects were diminished. Likewise, these cytokines increased alkaline phosphatase enzyme activity twofold in preadipocyte BMS2 cells. Both leukemia inhibitory factor and oncostatin M induced early active gene expression in resting preadipocyte BMS2 cells and decreased the steady state mRNA level of a unique osteoblastic gene marker, osteocalcin. A fifth cytokine whose receptor complex shares the gp130 protein, ciliary neurotrophic factor, did not significantly regulate stromal cell differentiation when added by itself. However, with the addition of a missing component of its receptor complex, ciliary neurotrophic factor receptor α protein, this cytokine also inhibited BMS2 adipogenesis. Together, these data indicate that the cytokines whose receptors share the gp130 protein can modulate stromal cell commitment to the adipocyte and osteoblast differentiation pathways.  相似文献   

8.
Integrin heterodimers which share a common beta 1 subunit are the major cellular receptors for many extracellular matrix proteins. Here, we show that two inflammatory mediators, interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha), can regulate the expression of the alpha 1 beta 1 integrin heterodimer, known to be a laminin and collagen receptor. In human skin fibroblasts 10 units/ml IL-1 beta increase the biosynthesis of the alpha 1 integrin subunit an average of 4.5-fold. Furthermore, IL-1 beta can turn on alpha 1 subunit expression in MG-63 human osteosarcoma cells even in conditions where the untreated MG-63 cells do not express it in detectable amounts. The effect of TNF-alpha on alpha 1 subunit expression is similar. Both IL-1 beta and TNF-alpha increased MG-63 cell adhesion on laminin. The effect of transforming growth factor-beta 1 (TGF-beta 1) on integrin expression in MG-63 cells has been previously described (Heino, J., and Massagué, J. (1989) J. Biol. Chem. 264, 21806-21811). TGF-beta 1 decreases the biosynthesis of alpha 3 subunit but increases the production of alpha 2 subunit. IL-1 beta potentiates the effects of TGF-beta 1. Furthermore, in the presence of TGF-beta 1 the increase in the expression of alpha 1 subunit by IL-1 beta is even larger. Thus, IL-1 beta and TGF-beta 1, which usually have antagonistic functions in connective tissue, can regulate integrin expression in a synergistic way.  相似文献   

9.
R-Ras regulates integrin function, but its effects on integrin signaling pathways have not been well described. We demonstrate that activation of R-Ras promoted focal adhesion formation and altered localization of the alpha2beta1 integrin from cell-cell to cell-matrix adhesions in breast epithelial cells. Constitutively activated R-Ras(38V) dramatically enhanced focal adhesion kinase (FAK) and p130(Cas) phosphorylation upon collagen stimulation or clustering of the alpha2beta1 integrin, even in the absence of increased ligand binding. Signaling events downstream of R-Ras differed from integrins and K-Ras, since pharmacological inhibition of Src or disruption of actin inhibited integrin-mediated FAK and p130(Cas) phosphorylation, focal adhesion formation, and migration in control and K-Ras(12V)-expressing cells but had minimal effect in cells expressing R-Ras(38V). Therefore, signaling from R-Ras to FAK and p130(Cas) has a component that is Src independent and not through classic integrin signaling pathways and a component that is Src dependent. R-Ras effector domain mutants and pharmacological inhibition suggest a partial role for phosphatidylinositol 3-kinase (PI3K), but not Raf, in R-Ras signaling to FAK and p130(Cas). However, PI3K cannot account for the Src-independent pathway, since simultaneous inhibition of both PI3K and Src did not completely block effects of R-Ras on FAK phosphorylation. Our results suggest that R-Ras promotes focal adhesion formation by signaling to FAK and p130(Cas) through a novel mechanism that differs from but synergizes with the alpha2beta1 integrin.  相似文献   

10.
A novel inhibitor for the adhesion of monocytes to cytokine-stimulated endothelial cells, K-7174, was selected by an assay system using the cultured human monocytic cells and human endothelial cells. K-7174 inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) induced by either tumor necrosis factor alpha or interleukin-1beta, without affecting the induction of intercellular adhesion molecule-1 or E-selectin. K-7174 had no effect on the stability of VCAM-1 mRNA. Electrophoretic mobility shift assay revealed that its inhibitory effect on VCAM-1 induction was mediated by an effect on the binding to the GATA motifs in the VCAM-1 gene promoter region. K-7174 did not influence the binding to any of the following binding motifs: octamer binding protein, AP-1, SP-1, ets, NFkappaB, or interferon regulatory factor. These results suggest that the regulation of GATA binding may become a new target for anti-inflammatory drug development, acting through a mechanism independent from NFkappaB activity.  相似文献   

11.
Bone marrow stroma is the physical basis of the haematopoietic microenvironment and regulates several key features of stem cell proliferation and differentiation. It plays a crucial role in maintaining haematopoietic homeostasis. Earlier studies have shown that this is achieved through interactions with the extracellular matrix and specific molecules called the cell adhesion molecules (CAMs). In this paper, we show that E-cadherin, a cell adhesion molecule which plays a crucial role in cell-cell aggregation during development, is also present in the bone marrow stroma. The expression of the CAM can also be demonstrated on a subset of CD34(+)stem cells. Stromal expression of E-cadherin is decreased when treated with lymphokine mixture, phytohaemagglutinin-treated-leukocyte-conditioned medium (PHA-LCM). This is the reverse of ICAM-I expression, which increases with PHA-LCM treatment. E-cadherin shows homotypic and homophilic interaction and its presence on a subset of CD34(+)cells leads to speculation on whether this CAM has a role in adherence of primitive stem cells to the marrow stroma.  相似文献   

12.
13.
An important theme in molecular cell biology is the regulation of protein recruitment to the plasma membrane. Fundamental biological processes such as proliferation, differentiation or leukocyte functions are initiated and controlled through the reversible binding of signaling proteins to phosphorylated membrane components. This is mediated by specialized interaction modules, such as SH2 and PH domains. Cytohesin-1 is an intracellular guanine nucleotide exchange factor, which regulates leukocyte adhesion. The activity of cytohesin-1 is controlled by phospho inositide-dependent membrane recruitment. An interacting protein was identified, the expression of which is upregulated by cytokines in hematopoietic cells. This molecule, CYTIP, is also recruited to the cell cortex by integrin signaling via its PDZ domain. However, stimulation of Jurkat cells with phorbol ester results in re-localization of CYTIP to the cytoplasm, and membrane detachment of cytohesin-1 strictly requires co-expression of CYTIP. Consequently, stimulated adhesion of Jurkat cells to intracellular adhesion molecule-1 is repressed by CYTIP. These findings outline a novel mechanism of signal chain abrogation through sequestration of a limiting component by specific protein-protein interactions.  相似文献   

14.
PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein   总被引:1,自引:0,他引:1  
Signaling initiated by Class Ia phosphatidylinositol-3-kinases (PI3Ks) is essential for cell proliferation and survival. We discovered a novel protein we call PI3K interacting protein 1 (PIK3IP1) that shares homology with the p85 regulatory PI3K subunit. Using a variety of in vitro and cell based assays, we demonstrate that PIK3IP1 directly binds to the p110 catalytic subunit and down modulates PI3K activity. Our studies suggest that PIK3IP1 is a new type of PI3K regulator.  相似文献   

15.
The junction between cytokines and cell adhesion.   总被引:12,自引:0,他引:12  
Several aspects of the interactions between growth factors and cell adhesion are described. Recent advances in the field come from the identification of molecules resembling growth factors or growth factor receptors, which bear cell adhesion motifs as well as molecules participating in both cell growth control and adhesion.  相似文献   

16.
A novel hypoxically regulated intercellular junction protein (claudin-like protein of 24 kDa, CLP24) has been identified that shows homology to the myelin protein 22/epithelial membrane protein 1/claudin family of cell junction proteins, which are involved in the modulation of paracellular permeability. The CLP24 protein contains four predicted transmembrane domains and a C-terminal protein-protein interaction domain. These domains are characteristic of the four transmembrane spanning (tetraspan) family of proteins, which includes myelin protein 22, and are involved in cell adhesion at tight, gap and adherens junctions. Expression profiling analyses show that CLP24 is highly expressed in lung, heart, kidney and placental tissues. Cellular studies confirm that the CLP24 protein localizes to cell-cell junctions and co-localizes with the beta-catenin adherens junction-associated protein but not with tight junctions. Over-expression of CLP24 results in decreased adhesion between cells, and functional paracellular flux studies confirm that over-expression of the CLP24 protein modulates the junctional barrier function. These data therefore suggest that CLP24 is a novel, hypoxically regulated tetraspan adherens junction protein that modulates cell adhesion, paracellular permeability and angiogenesis.  相似文献   

17.
The adhesion molecule lymphocyte function-associated antigen 3 (LFA-3) (CD58) is an important regulator of immune cell function which occurs as both surface-associated and 'soluble' forms. This study has investigated the inter-relationship and the effects of cytokines on the expression of LFA-3 isoforms. The surface antigen was found to be relatively unaffected by cytokines, but the release of soluble LFA-3 (sLFA-3) was highly responsive to interleukin 1beta (IL-1beta), interferon gamma (IFN-gamma) and tumour necrosis factor alpha (TNF-alpha). This modulation was cell-specific, particularly with regard to IFN-gamma, which up-regulated sLFA-3 release by A431 cells but down-regulated the release of the soluble form from HEp2 and HepG2 cells. We further demonstrated that LFA-3 is also present in a cytoplasmic 'pool' in each of the cells and, moreover, that cleavage of LFA-3 from the cell surface by phospholipase C resulted in an increase in the levels of the intracellular LFA-3 and replacement of the membrane-associated antigen. These observations suggest that the expression of the surface, soluble and intracellular forms of LFA-3 may be linked by regulatory mechanisms which are likely to exert an important influence on inflammatory interactions.  相似文献   

18.
We have identified Adrm1 as a novel component of the regulatory ATPase complex of the 26 S proteasome: Adrm1 was precipitated with an antibody to proteasomes and vice versa. Adrm1 co-migrated with proteasomes on gel-filtration chromatography and non-denaturing polyacrylamide gel electrophoresis. Adrm1 has been described as an interferon-gamma-inducible, heavily glycosylated membrane protein of 110 kDa. However, we found Adrm1 in mouse tissues only as a 42 kDa peptide, corresponding to the mass of the non-glycosylated peptide chain, and it could not be induced in HeLa cells with interferon. Adrm1 was present almost exclusively in soluble 26 S proteasomes, albeit a small fraction was membrane-associated, like proteasomes. Adrm1 was found in cells in amounts equimolar with S6a, a 26 S proteasome subunit. HeLa cells contain no pool of free Adrm1 but recombinant Adrm1 could bind to pre-existing 26 S proteasomes in cell extracts. Adrm1 may be distantly related to the yeast proteasome subunit Rpn13, mutants of which are reported to display no obvious phenotype. Accordingly, knock-down of Adrm1 in HeLa cells had no effect on the amount of proteasomes, or on degradation of bulk cell protein, or accumulation of polyubiquitinylated proteins. This indicates that Adrm1 has a specialised role in proteasome function.  相似文献   

19.
The adapter molecule p130Cas (Cas) plays a role in cellular processes such as proliferation, survival, cell adhesion, and migration. The ability of Cas to promote migration has been shown to be dependent upon its carboxyl terminus, which contains a bipartite binding site for the protein tyrosine kinase c-Src (Src). The association between Src and Cas enhances Src kinase activity, and like Cas, Src plays an important role in cell proliferation and migration. In this study, we show that Src and Cas function cooperatively to promote cell migration in a manner that depends upon kinase-active Src. Another carboxyl-terminal binding partner of Cas, AND-34/BCAR3 (AND-34), functions synergistically with Cas to enhance Src activation and cell migration. The carboxyl-terminal guanine nucleotide exchange factor domain of AND-34, as well as the activity of its putative target Rap1, contribute to these events. A mechanism through which AND-34 may regulate Cas-dependent cell migration is suggested by the finding that Cas becomes redistributed from focal adhesions to lamellipodia located at the leading edge of AND-34 overexpressing cells. These data thus provide insight into how Cas and AND-34 may function together to stimulate Src signaling pathways and promote cell migration.  相似文献   

20.
p13suc1 binds to p34cdc2 kinase and is essential for cell cycle progression in eukaryotic cells. The crystal structure of S.pombe p13suc1 has been solved to 2.7 A resolution using data collected at the ESRF source, Grenoble, from both native crystals and crystals of a seleno-methionine derivative. The starting point for structure solution was the determination of the six selenium sites by direct methods. The structure is dominated by a four-stranded beta-sheet, with four further alpha-helical regions. p13suc1 crystallizes as a dimer in the asymmetric unit stabilized by the binding of two zinc ions. A third zinc site stabilizes the higher-order crystal packing. The sites are consistent with a requirement for zinc during crystal growth. A likely site for p13suc1-protein interaction is immediately evident on one face of the p13suc1 surface. This region comprises a group of conserved, exposed aromatic and hydrophobic residues below a flexible negatively charged loop. A conserved positively charged area would also present a notable surface feature in the monomer, but is buried at the dimer interface. p13suc1 is larger than its recently solved human homologue p9CKS2, with the extra polypeptide forming a helical N-terminal extension and a surface loop between alpha-helices 3 and 4. Notably, p13suc1 does not show the unusual beta-strand exchange that creates an intimate p9CKS2 dimer. p13suc1 cannot oligomerize to form a stable hexamer as has been proposed for p9CKS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号