首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The terminal oxidase of the NADH-dependent lathosterol 5-desaturation system was solubilized from rat liver microsomes with 2% Triton X-100, and partially purified approximately 18-fold with 19% yield after DEAE-cellulose and 6-aminohexyl-Sepharose column chromatography. The final enzyme preparation was free from other electron transfer components and phospholipids in microsomes, and the desaturation reaction was reconstituted with the following components: NADH, molecular oxygen, phospholipids and three proteins, i.e., NADH-cytochrome b5 reductase, cytochrome b5 and the terminal oxidase. Omission of one of these components led to an almost complete loss of the desaturase activity. Under the reconstitution conditions, the desaturase activity was significantly inhibited by potassium cyanide but was not affected by -SH reagents such as N-ethylmaleimide and dithiothreitol.  相似文献   

2.
NADH-cytochrome b5 reductase [EC 1.6.2.2] has been solubilized with Triton X-100 and purified to homogeneity from rabbit liver microsomes. The purified enzyme is essentially free of the detergent and phospholipids and exists in aqueous media as an oligomeric aggregate of about 13 S. Its monomeric molecular weight is about 33,000 and 1 mole of FAD is associated with 1 mole of the monomeric unit. The enzyme catalyzes the reductions by NADH of ferricyanide and 2,6-dichlorophenol indophenol at an activity ratio of 1 : 0.09. Although the intact form of cytochrome b5 is a poorer electron acceptor than its hydrophilic fragment for the purified flavoprotein, electron transfer from the reductase to the intact cytochrome can be markedly stimulated by detergents or phospholipids, which also cause profound enhancement of the NADH-cytochrome c reductase activity reconstituted from the reducatse and cytochrome b5. Upon digestion with trypsin [EC 3.4.21.4], the ability of the reductase to form an active NADH-cytochrome c reductase system with the intact form of cytochrome b5 and Triton X-100 is rapidly lost. This loss of the reconstitution capability can be prevented by preincubation of the reductase with phosphatidylcholine liposomes. Trypsin digestion also results in the cleavage of the reductase molecule to a protein having a molecular weight of about 25,000 and a smaller fragment. The purified flavoprotein can bind to liver microsomes, liver mitochondria, sonicated human erythrocyte ghosts, and phosphatidylcholine liposomes. The reductase solubilized directly from liver microsomes by lysosomal digestion however, is devoid of membrane-binding capacity. It is concluded that the intact form of NADH-cytochrome b5 reductase is an amphipathic protein and its hydrophobic moiety, which is removable by lysosomal digestion, is responsible for the tight binding of the reductase to microsomes and for its normal functioning in the membrane.  相似文献   

3.
Tetrahymena microsomes were solubilized with five different detergents and the effect on electron transport enzymes involved in fatty acid desaturation was studied. Cytochrome b560ms and NADPH-cytochrome c reductase were solubilized with a low concentration detergent (0.25%), in the order of sodium deoxycholate greater than Renex 690 greater than Triton X-100 greater than octylglucoside greater than sodium cholate, whereas all of these detergents at the high concentration (1%) could solubilize preferentially both enzymes (70-100%). Increasing the concentration of various detergents from 0.5 to 1.0% did not produce an incremental change in NADH-ferricyanide reductase solubilization. NADH-cytochrome c reductase system, which would be catalyzed by the cooperation action of NADH-ferricyanide and cytochrome b560ms, was relatively inactivated by all detergents. Compared to the other four detergents, octylglucoside has a much higher recovery of stearoyl-CoA desaturase activities in the supernatant. Our study suggests that octylglucoside may be more useful for the isolation in active form of cyanide-sensitive factor (CSF) from Tetrahymena microsomes.  相似文献   

4.
Preparations of rat lung microsomes containing 0.030-0.050 nmole of cytochromes P-450 and b5 per mg microsomal protein have been observed to contain significant levels of fatty acid desaturase activity. Both stearoyl CoA and palmitoyl CoA are desaturated to their monounsaturated analogues, oleic acid and palmitoleic acid, respectively. Activity (per mg microsomal protein) of the lung preparations varied according to the diet of the animals prior to killing in the order: fat free diet greater than normal rat chow greater than starvation. All preparations exhibited approximately 50% inhibition when incubated in the presence of 0.10 mM CN-. Maximal activity was obtained with the 0.50 mM NADH less activity with equal amounts of NADPH, and there was no synergistic interaction of NADH and NADPH together. The rate of desaturation was linear with protein concentrations between 0.15-1.5 mg microsomal protein/incubation at incubation times up to 8 min. A pH optimum range of 7.0-7.4 was observed. For all variables of fatty acid desaturase activity which were examined, the rate of desaturation of stearoyl CoA was approximately twice that for palmitoyl CoA. These results indicate that the same fatty acid desaturation system which is functional in the liver is also present in significant amounts in mammalian lungs.  相似文献   

5.
Divalent copper and copper complexes of tyrosine, histidine and lysine inhibited at low concentrations the stearoyl-CoA desaturation reaction in both chicken liver microsomes and in a purified system consisting of chicken liver delta 9 terminal desaturase, cytochrome b5, ascorbate and liposome. Although the copper chelates lowered the steady-state level of ferrocytochrome b5 by 20%, and partially inhibited the NADH-ferricyanide reductase activity, the availability of the ferrocytochrome b5 during the time course of desaturation was not affected, indicating that the site of inhibition of desaturation was at the terminal step, i.e., on the delta 9 terminal desaturase. The presence of chalates during catalysis was essential for the observed inhibition. Based on the observation that O2 is involved in the desaturation and that there is an initial electron reduction of desaturase iron, it is plausible that the copper chelates are inhibiting by acting as superoxide scavengers.  相似文献   

6.
Squalene epoxidase (EC 1.14.99.7, squalene 2,3-monooxygenase (epoxidizing) was purified to an apparent homogeneity from rat liver microsomes. The purification was carried out by solubilization of microsomes by Triton X-100, fractionation with ion exchangers, hydroxyapatite, Cibacron Blue Sepharose 4B, and chromatofocusing column chromatography. A total purification of 143-fold over the first DEAE-cellulose fraction was achieved. The purified enzyme gave a single major band on SDS-polyacrylamide gel electrophoresis and the Mr was estimated to be 51 000 as a single polypeptide chain. The enzyme showed no distinct absorption spectrum in the visible regions. The squalene epoxidase activity was reconstituted with the purified enzyme, NADPH-cytochrome P-450 reductase (EC 1.6.2.4), FAD, NADPH and molecular oxygen in the presence of Triton X-100. The apparent Michaelis constants for squalene and FAD were 13 microM and 5 microM, respectively. The Vmax was about 186 nmol per mg protein per 30 min for 2,3-oxidosqualene. The enzyme activity was not inhibited by potent inhibitors of cytochrome P-450. It is suggested that squalene epoxidase is distinct from cytochrome P-450 isozymes.  相似文献   

7.
A rabbit antiserum was prepared against rat liver microsomal cytochrome b5, and utilized in demonstrating the participation of this cytochrome in the microsomal stearyl-CoA desaturation reaction. The antiserum inhibited the NADH-cytochrome c reductase activity of rat liver microsorncs, but it did not inhibit either NADH-ferricyanide or NADPH-cytochrome c reductase activity of the microsomes. Thus, the inhibitory effect of the antiserum on the microsomal electron-transferring reactions seemed to be specific to those which require the participation of cytochrome b5.The NADH-dependent and NADPH-dependent desaturations of stearyl CoA by rat liver microsomes were strongly inhibited by the antiserum. The reduction of cytochrome b5 by NADH-cytochrome b5 reductase as well as the reoxidation of the reduced cytochrome b3 by the desaturase, the terminal cyanide-sensitive factor of the desaturation system, was also strongly inhibited by the antiserum. When about 90%, of cytochrome b5 was removed from rat liver microsomes by protease treatment, the desaturation activity of the microsomes became much more sensitive to inhibition by the antiserum. These results confirmed our previous conclusion that the reducing equivalent for the desaturation reaction is transferred from NAD(P)H to the cyanidesensitive factor mainly via cytochrome b5 in the microsomal membranes.  相似文献   

8.
The involvement of cytochrome b5 in palmitoyl-CoA desaturation by yeast microsomes was studied by using yeast mutants requiring unsaturated fatty acids and an antibody to yeast cytochrome b5. The mutants used were an unsaturated fatty acid auxotroph (strain E5) and a pleiotropic mutant (strain Ole 3) which requires either Tween 80 and ergosterol or delta-aminolevulinic acid for growth. Microsomes from the wild-type strain possessed both the desaturase activity and cytochrome b5, whereas those from mutant E5 contained the cytochrome but lacked the desaturase activity. Microsomes from mutant Ole 3 grown with Tween 80 plus ergosterol were devoid of both the desaturase activity and cytochrome b5, but those from delta-aminolevulinic acid-grown mutant Ole 3 contained cytochrome b5 and catalyzed the desaturation. The cytochrome b5 content in microsomes from mutant Ole 3 could be varied by changing the delta-aminolevulinic acid concentration in the growth medium, and the desaturase activity of the microsomes increased as their cytochrome b5 content was increased. The antibody to yeast cytochrome b5, but not the control gamma-globulin fraction, inhibited the NADH-cytochrome c reductase and NADH-dependent desaturase activities of the wild-type microsomes. It is concluded that cytochrome b5 is actually involved in the desaturase system of yeast microsomes. The lack of desaturase activity in mutant Ole 3 grown with Tween 80 plus ergosterol seems to be due to the absence of cytochrome b5 in microsomes, whereas the genetic lesion in mutant E5 appears to be located at ther terminal desaturase.  相似文献   

9.
In the previous study, the organoselenium-containing anti-inflammatory agent, Ebselen, was found to disrupt both hepatic microsomal NADH- and NADPH-dependent electron transport chains. In the current investigation, we focus on the action of Ebselen on three separate metabolic reactions, namely, fatty acid chain elongation, desaturation, and drug biotransformation, which utilize reducing equivalents via these microsomal electron transport pathways. Both NADH-dependent and NADPH-dependent chain elongation reactions showed (i) that the condensation step was inhibited by Ebselen; all three substrates, palmitoyl CoA (16:0), palmitoleoyl CoA (16:1), and gamma-linolenyl CoA (18:3), were differentially affected by Ebselen; for example, the apparent Ki's of Ebselen for the condensation of 16:0, 16:1, and 18:3 in the absence of bovine serum albumin (BSA) preincubation were 7, 14, and 34 microM, and those in the presence of BSA preincubation were 35, 62, and 150 microM, respectively, supporting earlier data for multiple condensing enzymes; (ii) that the beta-ketoacyl CoA reductase-catalyzed reaction step which appears to receive electrons, at least in part, from the cytochrome b5 system, was also markedly inhibited by varying Ebselen concentrations; and (iii) that similar results were obtained with the dehydrase and the enoyl CoA reductase. Hence, each of the four component steps was significantly inhibited by Ebselen. Another important fatty acid biotransformation reaction, delta 9 desaturation of stearoyl CoA to oleoyl CoA, was significantly inhibited (90%) by 30 microM Ebselen. This effect appeared to be directly related to the NADH-dependent electron transport chain rather than to a direct action on the desaturase enzyme. Last, Ebselen also inhibited both aminopyrine and benzphetamine N-demethylations, two cytochrome P450-catalyzed reactions, in untreated rats, in rats on a high carbohydrate diet, and in phenobarbital-treated rats.  相似文献   

10.
n-Butyl and isoamyl alcohols decrease the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and enhance the efficiency of pyrene excimer formation when these probes are incorporated in rat-liver microsomal membrane, suggesting an increase in rotational and translational mobilities. Neither alcohol modifies NADH-ferricyanide reductase activity but both increase NADH-cytochrome c reductase activity. This was interpreted as an increase in the rate of lateral diffusion of the proteins cytochrome b5 and cytochrome b5 reductase as a consequence of the enhanced membrane lipid phase fluidity. Microsomal delta 9 and delta 6 desaturase activities in the presence of isoamyl alcohol were also studied. This alcohol decreases delta 9 desaturation when it is measured at a low substrate concentration (13 microM palmitic acid), but it is not modified when it is measured at a high substrate concentration (66 microM palmitic acid). delta 6 desaturation is diminished by isoamyl alcohol when it is measured with both 13 microM and 66 microM linoleic acid. The influence of isoamyl alcohol on the glucose-6-phosphatase system activity was also studied. In non-detergent-treated microsomes, isoamyl alcohol enhances glucose-6-phosphatase activity. However, if microsomes are previously treated with 0.1% Triton X-100 isoamyl alcohol does not modify this activity. The enhancement of the glucose 6-phosphate transport rate is not due to membrane permeability barrier disruption, since isoamyl alcohol does not modify mannose-6-phosphohydrolase latency. This would suggest that an increase in membrane lipid phase fluidity specifically activates glucose 6-phosphate transport across the membrane.  相似文献   

11.
NADH-cytochrome b5 reductase from hog gastric microsomes was studied with respect to substrate dependence, optimum pH, thermal denaturation as well as anti-cytochrome b5 antibodies and different ions. The reduction of potassium ferricyanide by the enzyme was specific for NADH. Using potassium ferricyanide or trypsin-solubilized liver cytochrome b5 (Tb5) as substrates, enzyme activity was inhibited by ADP and to a lesser extent by ATP. Tb5- (but not ferricyanide-) reductase was activated by ionic strength up to 0.05 ion equivalent per liter and inhibited at higher strengths whatever the ion used (Cl-, Na+, Ca2+, Mg2+). Enzyme solubilization occurred with Triton X100. The solubilization increased the Tb5- (but not the ferricyanide-) reductase activity up to a Triton:protein ratio of 15. We therefore suggest that gastric microsomes contain a Triton soluble membrane-bound NADH cytochrome b5 reductase which is in many respects similar to the liver and red cell enzymes.  相似文献   

12.
The characteristics of the microsomal stearoyl CoA desaturase (EC 1.14.99.5) of vegetative Fusarium oxysporum cells grown at different temperatures were studied. The enzyme had an unusual preference for NADPH (Km = 38 micrometers) over NADH (Km = 89 micrometers) as electron donor, and a relatively high optimum pH of 8.3. Enzyme activity was highest in microsomes from cells grown at 37 degrees C and lowest in cells grown at 15 degrees C. This result correlated well with the observed changes in oleic acid content of the microsomal lipids. Both NADPH-linked reductase activities and hemoprotein content were lowest in cells grown at 37 degrees C. Spectrophotometric analysis of the microsomal hemoproteins indicated the absence of cytochrome b5 and the presence of a b-type heme with a pyridine hemochrome alpha band absorption maximum at 565 nm. Labile sulfide analysis and inhibitor studies with thenoyltrifluoroacetone suggested a role for an iron-sulfur protein in the electron transfer system associated with the desaturase.  相似文献   

13.
The cholesterol content of rat liver microsomal membranes was modified in vitro by incubating microsomes and cytosol with liposomes prepared by sonication of microsomal lipids and cholesterol. In this way, the cholesterol to phospholipid molar ratio was increased from 0.11-0.13 in untreated microsomes to a maximal of 0.8 in treated ones. Cholesterol incorporation in microsomes produced an increase in the diphenyl-hexatriene steady-state fluorescence anisotropy and a decrease in the efficiency of pyrene-excimer formation which indicated a decrease in the rotational and translational mobility, respectively, of these probes in the membranes lipid phase. Cholesterol incorporation in microsomes did not affect significantly the glucose-6-phosphatase activity in 0.1% Triton X-100 totally disrupted microsomes, but diminished the glucose-6-phosphatase activity of 'intact' microsomes. This indicates that possibly the glucose 6-phosphate translocation across the microsomal membrane is impeded by an increase in the membrane apparent 'microviscosity'. Cholesterol incorporation in microsomes decreased NADH-cytochrome c reductase without affecting NADH-ferricyanide reductase activity. The delta 9 desaturation reaction rate was enhanced by cholesterol incorporation at low but not at high palmitic acid substrate concentration. delta 5 and delta 6 desaturase reaction-rates were increased both at low and high fatty acid substrate concentrations. These results suggest that a mechanism involving fatty acid desaturase enzymes, might exist to self-regulate the microsomal membrane lipid phase 'fluidity' in the rat liver.  相似文献   

14.
The activity of rat liver microsomal squalene epoxidase is inhibited effectively by digitonin. Concentrations of 0.8 to 1.2 mg/ml of digitonin cause total inhibition of microsomal (0.75 mg protein/ml) squalene epoxidase either in microsomes that were pretreated with digitonin and subsequently washed and subjected to epoxidase assay or when digitonin was added directly to the assay. The inhibition of squalene epoxidase by digitonin is concentration-dependent and takes place rapidly within 5 min of exposure of the microsomes to digitonin. Octylglucoside, dimethylsulfoxide, CHAPS, as well as cholesterol or total microsomal lipid extract were ineffective in restoring the digitonin-inhibited squalene epoxidase activity. Epoxidase activity in digitonin-treated microsomes was fully restored by Triton X-100. The reactivation by Triton X-100 displays a concentration optimum with maximal reactivation of the epoxidase (0.7 mg protein/ml) occurring at 0.2% Triton X-100. Microsomal 2,3-oxidosqualene-lanosterol cyclase is also inhibited by digitonin. Higher concentrations of digitonin are required to obtain full inhibition of the cyclase activity and only 40% inhibition of cyclase activity is observed at 1 mg/ml of digitonin. Solubilized (subunit size 55 to 66 kDa) and microsomal (subunit size 97 kDa) 3-hydroxy-3-methylglutaryl CoA reductase are totally unaffected by the same concentration of digitonin. Squalene synthetase, another microsomal enzyme in the biosynthetic pathway of cholesterol, is activated by digitonin. A 2.2-fold activation of squalene synthetase is observed at 0.8 mg/ml of digitonin. The results agree with a model in which squalene, and to a lesser degree 2,3-oxidosqualene, are segregated by digitonin into separate intramembranal pools.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. The lipid requirement for maximum desaturase activity was investigated using acetone/water mixtures. It was shown that for maximum stearoyl-CoA desaturase activity of hen liver microsomes neither the total neutral lipid fraction nor 44% of the phospholipid fraction were required. 2. The effect of sodium deoxycholate, Triton X-100, Nonidet P-40 and Bio-solv on the enzyme activity indicated that the neutral detergents had a milder effect than the ionic detergent but both classes could cause considerable irreversible loss of activity. 3. The treatment of the microsomes with 2.5% (v/v) water in acetone greatly improved the effective solubilising power of Triton X-100. The yield of desaturase in the 100 000 X g supernatant obtained by treating the microsomal fraction in this way was strongly dependent upon protein concentration. Maximum solubilisation was achieved with25 mg protein per ml 1% (w/v) Triton X-100 in 0.1 M potassium phosphate buffer pH 7.4. 4. A comparison of the properties of the solubilised and membrane-bound enzyme was made by an investigation of: (i) the temperature and pH optimum, (ii) activation energy and (iii) the effect of inhibitors on the enzyme activity.  相似文献   

16.
The rat hepatic stearoyl-CoA desaturation decreased by 3.7-fold in streptozotocin-induced diabetes. Insulin treatment of diabetic rats increased the enzyme activity by 7-fold. In marked contrast to glucose administration, fructose feeding in diabetic rats resulted in 20-fold stimulation of stearoyl-CoA desaturation, although both carbohydrates stimulated stearoyl-CoA desaturation in normal rats. Measurement of the microsomal electron transfer components showed no significant changes in the NADH-cytochrome b5 reductase activity or in the concentration of cytochrome b5. However, the activity of the terminal desaturase changed in a parallel fashion as the amount of terminal desaturase reflect changes in the overall desaturation. Supplementation of various microsomes with the saturating amount of purified terminal desaturase resulted in the formation of similar amounts of catalytically active complex and increased the stearoyl-CoA desaturation to the same level suggesting that the changes in the amount of terminal desaturase reflect changes in the overall desaturation. The results support the suggestion that both insulin and the intermediates of carbohydrate metabolism are involved in the regulation of terminal desaturase.  相似文献   

17.
The present study provides strong evidence for the involvement of rat liver microsomal cytochrome b5 in the first reduction step of fatty acid chain elongation. The rate of reoxidation of NADH-reduced microsomal cytochrome b5 was markedly stimulated (up to 3-fold) by the addition of increasing concentrations of beta-ketohexadecanoyl-CoA (1-8 microM). A quantitative analysis of product formation, the effect of cyanide, and anaerobiosis completely exclude the possibility that desaturase activity accounted for the beta-ketohexadecanoyl-CoA-induced stimulation of the cytochrome b5 reoxidation rate. Using liver microsomes from untreated rats, the beta-keto substrate was found to stimulate the rate of reoxidation of cytochrome b5 by 30%. However, when liver microsomes from fat-free diet rats were employed the stimulation was more than 3-fold, suggesting that the beta-ketoacyl-CoA reductase is inducible by a high carbohydrate, fat-free diet. This study also provides evidence for the noninvolvement of cytochrome b5 in the terminal reaction step (second reduction step of chain elongation), which is catalyzed by the trans-2-enoyl-CoA reductase. Although trans-2-hexadecenoyl-CoA significantly stimulated the NADH-reduced cytochrome b5 reoxidation rate under aerobic conditions, it did not have any stimulatory effect under anaerobic conditions. One interpretation of these results is that the trans-2-hexadecenoyl-CoA is substrate for the microsomal delta 9 desaturase system. Consistent with this conclusion was the fact that the trans-2-hexadecenoyl-CoA inhibited the liver microsomal delta 9 desaturation of stearoyl-CoA to oleoyl-CoA.  相似文献   

18.
Cell free preparations of Tetrahymena thermophila contain an enzyme that catalyzes the direct desaturation of stearoyl CoA to octadecenoic acid. The enzyme is associated with the microsomal fraction of the ciliate. Substrate of the enzyme consists of either free stearic acid or stearoyl CoA. Both ATP and CoA are required when free stearate is the substrate and are also highly stimulatory when stearoyl CoA is the substrate. With stearoyl CoA as the substrate, either NADH or NADPH are required for desaturase activity. In presence of ATP and CoA, either NAD or NADP can replace NADH and NADPH. Desaturase activity is optimal when the enzyme is incubated at pH of 7.2 and a temperature of 30-35 degrees C. Highest levels of the stearoyl CoA desaturase are found in stationary phase ciliates grown at 35 degrees C.  相似文献   

19.
Although microsomes prepared from rat kidney cortex contained significant concentrations of both NADH cytochrome b5 reductase and cytochrome b5, they did not catalyze cytochrome b5-dependent Δ9 oxidative lipid desaturation. However, incubation of kidney microsomes in the presence of control liver microsomes resulted in a two-fold increase in fatty acid desaturase activity over that seen with liver microsomes alone. Addition of kidney microsomes to liver microsomes prepared from animals maintained on a fat free diet resulted in an increased desaturase activity which was twice that seen with the control liver preparation. Kidney microsomes alone did not catalyze the cytochrome P-450-dependent N-demethylation of aminopyrine, and in contrast to the desaturate, no increase in demethylase activity was observed when kidney microsomes were added to liver microsomes.  相似文献   

20.
Cell free preparations of Tetrahymena thermophila contain an enzyme that catalyzes the direct desaturation of stearoyl CoA to octadecenoic acid. The enzyme is associated with the microsomal fraction of the ciliate. Substrate for the enzyme consists of either free stearic acid or stearoyl CoA. Both ATP and CoA are required when free stearate is the substrate and are also highly stimulatory when stearoyl CoA is the substrate. With stearoyl CoA as the substrate, either NADH or NADPH are required for desaturase activity. In the presence of ATP and CoA, either NAD or NADP can replace NADH and NADPH. Desaturase activity is optimal when the enzyme is incubated at a pH of 7.2 and a temperature of 30–35°C. Highest levels of the stearoyl CoA desaturase are found in stationary phase ciliates grown at 35°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号