首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We have developed a two-compartment growth inhibition assay that can provide information about leakage, metabolism and delivery of liposome-dependent drugs under cell culture conditions, and at drug concentrations that are relevant to drug delivery. Two cell lines are grown in separate compartments separated from each other by a 0.1 micron polycarbonate membrane. The membrane allows free drugs to diffuse rapidly from one compartment to another, and does not allow liposomes to diffuse through. Liposomes are added to the first compartment, which contains target cells. The extent of leakage caused by these cells is determined by the growth inhibition of non-target cells in the second compartment. We show that methotrexate and methotrexate-gamma-aspartate leak rapidly and almost completely when encapsulated in phosphatidylglycerol/cholesterol (67:33) liposomes. In contrast, there is only 42% leakage when the drugs are encapsulated in distearoylphosphatidylglycerol/cholesterol (67:33) liposomes. We also demonstrate that the target cells (CV1-P) may partially degrade encapsulated methotrexate-gamma-aspartate to methotrexate. Therefore, methotrexate-gamma-aspartate may be a lysosomally cleaved pro-drug of methotrexate.  相似文献   

2.
We have studied the liposome-mediated delivery of methotrexate-gamma-aspartate to five cell lines. The sensitivity of the cells to encapsulated drug varies widely in accordance with their ability to take up the liposomes. CV1-P cells can be 150-times more sensitive to encapsulated methotrexate-gamma-aspartate than to free drug, while AKR/J SL2 cells are only twice as sensitive to the encapsulated drug. Negatively-charged liposomes are much more efficient for delivery than are neutral liposomes, and cholesterol is an essential component of the liposome membrane for optimal drug delivery. The optimal liposome size for drug delivery is 0.1 micron, although the amount of cell-associated lipid is the same for all liposome sizes. The effect of the encapsulated drug is inhibited by NH4Cl, suggesting an endocytic mechanism for delivery. The potency of the encapsulated drug is not affected by wide variations in the drug: lipid ratio.  相似文献   

3.
We have examined the growth-inhibitory potency of several pteridines encapsulated in negatively charged liposomes, including methotrexate, methotrexate-gamma-methylamide, methotrexate-gamma-dimethylamide, methotrexate-alpha-aspartate, and a lipophilic methotrexate-phosphatidylethanolamine conjugate. The potency of encapsulated methotrexate is greater than the potency of the free drug for CV1-P cells, but not for other cell lines. The potency of methotrexate-gamma-methylamide and methotrexate-gamma-dimethylamide is only minimally improved by encapsulation. The potency of methotrexate-alpha-aspartate is increased by encapsulation. In addition, the lipophilic methotrexate derivative has demonstrable potency when incorporated in liposomes. We have also examined the potency of several pteridines under conditions where the cells are exposed to the drug for periods shorter than the entire growth assay. Reduction of the exposure time decreases the potency of both encapsulated and free drugs. However, the difference in potency between the encapsulated and free drug is increased, because the potency of the encapsulated drug is affected less. Consequently, encapsulated methotrexate-gamma-aspartate is 300-fold more potent than free drug, if CV1-P cells are exposed to drug for 4 h. Moreover, encapsulated methotrexate is more potent than free methotrexate for growth inhibition of L929 fibroblasts, if the term of exposure is less than 8 h. Potency is least affected by reduction of exposure length for the lipophilic methotrexate derivative.  相似文献   

4.
S J Comiskey  T D Heath 《Biochemistry》1990,29(15):3626-3631
An enzyme inhibition assay was developed to determine methotrexate-gamma-aspartate leakage from liposomes at lipid concentrations as low as 43 nM phospholipid. When negatively charged liposomes prepared with phosphatidylglycerol/cholesterol 67:33 or phosphatidylinositol/cholesterol 67:33 were incubated in 10% (v/v) newborn calf serum, they leaked over 90% of their contents in 2 min. In contrast, liposomes prepared from phosphatidylcholine/cholesterol 67:33 leaked 18% of their contents under the same conditions. The amount of negative charge required to induce liposome leakage was determined by preparing liposomes with varying amounts of phosphatidylglycerol and phosphatidylcholine. Extensive leakage was observed only from liposomes prepared with greater than 50 mol of phosphatidylglycerol per 100 mol of phospholipid. The effect of the phase transition temperature on leakage of negatively charged liposomes in 10% (v/v) serum was investigated by using a series of phosphatidylglycerols with varying acyl chain lengths. Liposomes prepared from distearoylphosphatidylglycerol or dipalmitoylphosphatidylglycerol leaked less than 18% of their contents in 10% serum, whereas liposomes prepared with dilauroylphosphatidylglycerol or unsaturated lipids leaked more than 70% of their contents. Lipoprotein removal from serum followed by treatment with lipid to remove residual apoproteins reduced the leakage from phosphatidylglycerol liposomes in 10% serum. Phosphatidylglycerol liposomes leaked 73% in the presence of human low-density lipoproteins, but only 29% in the presence of bovine apolipoprotein A-I, and 25% in the presence of human high-density lipoproteins. Phosphatidylglycerol/cholesterol and phosphatidylserine/cholesterol liposomes leaked 67% in 4 mg/mL bovine serum albumin purified by cold ethanol extraction. The leakage of liposomes in albumin solutions could be substantially reduced by treating the albumin with lipid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have studied the liposome-mediated delivery of methotrexate-γ-aspartate to five cell lines. The sensitivity of the cells to encapsulated drug varies widely in accordance with their ability to take up the liposomes. CV1-P cells can be 150-times more sensitive to encapsulated methotrexate-γ-aspartate than to free drug, while AKR/J SL2 cells are only twice as sensitive to the encapsulated drug. Negatively-charged liposomes are much more efficient for delivery than are neutral liposomes, and cholesterol is an essential component of the liposome membrane for optimal drug delivery. The optimal liposome size for drug delivery is 0.1 μm, although the amount of cell-associated lipid is the same for all liposome sizes. The effect of the encapsulated drug is inhibited by NH4Cl, suggesting an endocytic mechanism for delivery. The potency of the encapsulated drug is not affected by wide variations in the drug:lipid ratio.  相似文献   

6.
Delivery of liposome-encapsulated simian virus 40 (SV40) DNA to African green monkey Related to been used as a probe to study liposome--cell interactions and to determine conditions which favor the intracellular delivery of liposome contents to cells. The efficiency of DNA delivery by various liposome preparations (monitored by infectivity assays) was found to be dependent both on the magnitude of vesicle binding to cells and on the resistance of liposomes to cell-induced leakage of contents. Acidic phospholipids were much more effective in both binding and delivery, and phosphatidylserine (PS) was the best in both aspects. The inclusion of 50 mol % cholesterol in liposomes reduces the cell-induced leakage of vesicle contents (2--5-fold) and substantially enhances the delivery of DNA to cells (2--10-fold). Following incubation of cells with negatively charged liposomes containing SV40 DNA, infectivity can be enhanced greatly by brief exposure of the cells to glycerol solutions. In contrast, only slight enhancement by glycerol was observed for SV40 DNA encapsulated in neutral or positively charged liposomes. The results of competition experiments between empty phosphatidylcholine liposomes and DNA-containing PS liposomes also suggest possible differences in the interaction of neutral and negatively charged liposome preparations with cells. Morphological studies indicate that the glycerol treatment stimulates membrane ruffling and vacuolization and suggest that the enhanced uptake of liposomes occurs by an endocytosis-like process. Results obtained with metabolic inhibitors are also consistent with the interpretation that the enhancement of liposome delivery in glycerol-treated cells occurs via an energy-dependent endocytotic pathway. Pretreatment of cells with chloroquine, a drug which alters lysosomal activity, further enhanced infectivity in glycerol-treated cells (4-fold). This observation suggests the involvement of a lysosomal processing step at some point in the expression of liposome-encapsulated DNA and, more importantly, illustrates the possibility of altering cellular mechanism to engineer more efficient delivery by liposomes. Under optimal conditions determined in this study, the efficiency of liposome-mediated SV40 DNA delivery was increased more than 1000-fold over that obtained by simply incubating cells with liposomes. It is also demonstrated that these conditions enhance delivery of other molecules, besides DNA, which are encapsulated in liposomes.  相似文献   

7.
8.
9.
Abstract

N-(phosphonacetyl)-L-aspartic acid (PALA) exhibits a considerable increase in its in vitro growth inhibitory potency when it is incorporated into liposomes. Encapsulation in negatively charged liposomes increases the growth inhibitory potency of PALA by up to 360 times. For CV1-P and L929 cells, encapsulation in liposomes prepared from neutral phospholipids does not increase the potency of PALA. the potency of encapsulated PALA is not dependent on the size of liposomes, being equally effective in all liposomes between 0.1 and 1 µm in diameter. the potency of PALA is greatest when it is incorporated into liposomes prepared from high phase transition temperature lipids. Exposure of cells to 7.5 mM ammonium chloride substantially inhibits the effects of both free and encapsulated PALA. the potency of free PALA is more sensitive to changes in exposure length than is the potency of encapsulated PALA. Consequently the difference in potency between free and encapsulated PALA is greatest when exposure length is short (1-2 hr). the considerable potency of encapsulated PALA makes this drug a possible treatment for tumors and ocular cicatricial diseases.  相似文献   

10.
We have examined the growth-inhibitory potency of several pteridines encapsulated in negatively charged liposomes, including methotrexate, methotrexate-γ-methylamide, methothrexate-γ-dimethylamide, methotrexate-α-aspartate, and a lipophilic methotrexate-phosphatidylethanolamine conjugate. The potency of encapsulated methotrexate is greater than the potency of the free drug for CV1-P cells, but not for other cell lines. The potency of methotrexate-γ-methylamide and mehtotrexate-γ-dimethylamide is only minimally improved by encapsulation. The potency of methotrexate-α-aspartate is increased by encapsulation. In addition, the lipophilic methotrexate derivative has demonstrable potency when incorporated in liposomes. We have also examined the potency of several pteridines under conditions where cells are exposed to the drug for periods shorter than the entire growth assay. Reduction of the exposure time decreases the potency of both encapsulated and free drugs. However, the difference in potency between the encapsulated and free drug is increased, because the potency of the encapsulated drug is affected less. Consequently, encapsulated methotrexate-γ-aspartate is 300-fold more potent than free drug, if CV1-P cells are exposed to drug for 4 h. Moreover, encapsulated methotrexate is more potent than free methotrexate for growth inhibition of L929 fibroblasts, if the term of exposure is less than 8 h. Potency is least affected by reduction of exposure length for the lipophilic methotrexate derivative.  相似文献   

11.
The present study describes the liposome-mediated delivery of the type 1 ribosome-inactivating protein luffin to human melanoma cells in vitro. Luffin from Luffa cylindrica seeds has been successfully incorporated into lecithin/cholesterol and lecithin/cholesterol/dicetylphosphate negatively charged liposomes. The exposure of melanoma cells to the two types of liposomes resulted in the inhibition of protein synthesis and cell growth; apoptotic cell death was verified by means of TUNEL reaction and quantitation of cytosolic oligonucleosome-bound DNA. The toxicity of encapsulated luffin varied with the lipid composition of the vesicles; the strongest effect was observed with lecithin/cholesterol liposomes. These results identify liposome-incorporated luffin as a possible alternative to immunotoxins for the treatment of human melanoma in situ.  相似文献   

12.
We have investigated the in vitro cytotoxicity of free doxorubicin (DOX) and liposome-entrapped DOX (L-DOX) against a human ovarian carcinoma cell line (OV-1063) using a colorimetric assay. DOX was encapsulated in the inner water phase of liposomes by an ammonium sulfate-generated proton gradient. Liposomes varied in phospholipid composition but were of a similar size. It was found that the cytotoxic activity of L-DOX is substantially decreased when liposomes containing phospholipids of high phase-transition temperature (Tm) are used. The type of negatively charged headgroup did not have any significant influence on the cytotoxicity observed. Experiments using resin beads that bind free and protein-bound DOX, but do not interact with L-DOX, indicated that the cytotoxic effect is mediated by the release of drug from the liposomes into the extracellular medium; no evidence was found for direct cellular uptake of liposome-encapsulated drug. The use of the ionophore nigericin to induce the release of DOX from high-Tm liposomes increased cytotoxicity to a level comparable to free DOX, suggesting that 'remote release' techniques may substantially improve the efficiency of liposome-mediated drug delivery and allow for the full exploitation of the favorable pharmacokinetic properties of specific high-Tm formulations.  相似文献   

13.
We have studied the growth-inhibitory potency of methotrexate and methotrexate-γ-aspartate encapsulated in liposomes conjugated to ligands of ecto-NAD+-glycohydrolase (Salord, J. et al., Biochim. Biophys. Acta 886 (1986) 64–75). The ability of targeted liposomes to enhance growth inhibition, which amounted to a 4-fold reduction of the drug concentration required to inhibit cell growth by 50% as compared to nontargeted liposomes, was observed only with cells expressing this ecto-enzyme activity, i.e., Swiss 3T3 fibroblasts and RAJI, a Burkitt-type lymphoma cell line. Delivery of the encapsulated drugs was inhibited by NH4Cl and varied with the endocytic capacity of the cells. Only small unilamellar vesicles affected the growth of the lymphoma cells, whereas the fibroblasts were more sensitive to large unilamellar vesicles. With vesicles of appropriate size, there was a good correlation between the specific binding of the targeted liposomes to cells and drug delivery. Our results suggest that ecto-NAD+-glycohydrolase can provide a recognition site on target cells and mediate the internalization of targeted liposomes by a mechanism most probably related to adsorptive endocytosis.  相似文献   

14.
5-Fluoroorotate: a new liposome-dependent cytotoxic agent   总被引:2,自引:0,他引:2  
The potency of 5-fluoroorotate for inhibition of L929 or CV1-P cell growth is increased by encapsulation in negatively charged liposomes. The optimal liposome composition is dipalmitoylphosphatidylglycerol: cholesterol, 67:33. Unextruded large unilamellar liposomes are the optimal size for delivery. This compound is the second transport-negative drug which we have found to exhibit liposome-dependent delivery.  相似文献   

15.
The interaction of the low molecular weight group of surfactant-associated proteins, SP 5-18, with the major phospholipids of pulmonary surfactant was studied by fluorescence measurements of liposomal permeability and fusion, morphological studies, and surface activity measurements. The ability of SP 5-18 to increase the permeability of large unilamellar lipid vesicles was enhanced by the presence of negatively charged phospholipid. The permeability of these vesicles increased as the protein concentration was raised and the pH was lowered. SP 5-18 also induced leakage from liposomes made both from a synthetic surfactant lipid mixture and from lipids separated from SP 5-18 during its purification from canine sources. When SP 5-18 was added to egg phosphatidylglycerol liposomes, the population of liposomes which became permeable leaked all encapsulated contents, while the remaining liposomes did not leak at all. The extent of leakage was higher in the presence of 3 mM calcium. SP 5-18 also induced lipid mixing between two populations of egg phosphatidylglycerol liposomes in the presence of 3 mM calcium, as monitored by resonance energy transfer between two different fluorescent lipid probes, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine and N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine. Negative-staining electron microscopy showed that the addition of SP 5-18 and 3 mM calcium produced vesicles twice the size of control egg phosphatidylglycerol liposomes. In addition, surface balance measurements revealed that the adsorption of liposomal lipids to an air/water interface was enhanced by the presence of SP 5-18, negatively charged phospholipids, and 3 mM calcium. These observations suggest a similar lipid dependence for the interactions observed in the fluorescence and adsorption experiments.  相似文献   

16.
D V Kalvakolanu  A Abraham 《BioTechniques》1991,11(2):218-22, 224-5
Antibodies specific to avian myeloblastosis virus envelope glycoprotein gp80 were raised. Immunoliposomes were prepared using anti-avian myeloblastosis virus envelope glycoprotein gp80 antibody. The antibody was palmitoylated to facilitate its incorporation into lipid bilayers of liposomes. The fluorescence emission spectra of palmitoylated IgG have exhibited a shift in emission maximum from 330 to 370 nm when it was incorporated into the liposomes. At least 50% of the incorporated antibody molecules were found to be oriented towards the outside in the liposomes. The average size of the liposome was found to be 300 A, and on an average, 15 antibody molecules were shown to be present in a liposome. When adriamycin encapsulated in immunoliposomes was incubated in a medium containing serum for 72 h, about 75% of the drug was retained in liposomes. In vivo localization studies, revealed an enhanced delivery of drug encapsulated in immunoliposomes to the target tissue, as compared to free drug or drug encapsulated in free liposomes. These data suggest a possible use of the drugs encapsulated in immunoliposomes to deliver the drugs in target areas, thereby reducing side effects caused by antiviral agents.  相似文献   

17.
Analogs of adenosine triphosphate (ATP) with substitutions at the 8-position have been shown to be cytotoxic to multiple myeloma, one of the most prevalent and serious blood cancers. However, these drugs do not readily cross biological membranes and are very sensitive to phosphatases present in body fluids. To circumvent these disadvantages, 8-substituted ATPs were encapsulated into cationic phospholiposomes generated from cationic phosphatidylcholines (EDOPC; 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, and EDPPC, the corresponding dipalmitoyl homolog), compounds with low toxicity that readily form liposomes. Vortexing was an efficient encapsulation procedure, more so than freeze-thawing. At the lipid:drug ratio of 5:1 (mol/mol), 20% of 8-Br-ATP was encapsulated within EDOPC liposomes. Efficient encapsulation and retention of 8-NH?-ATP required the inclusion of cholesterol. Liposomes of EDOPC:cholesterol (55:45 mole/mole), at a lipid:drug mole ratio of 10:1, captured ~40% of the drug presented. Cytotoxicity assays of this formulation on multiple myeloma cells in culture showed encapsulated drug to be up to 10-fold more effective than free drug, depending upon dose. Intracellular distribution studies (based on fluorescent derivatives of lipids and of ATP) revealed that both liposomes and drug were taken up by multiple myeloma cells, and that uptake of a fluorescent ATP derivative was significantly greater when encapsulated than when free. Liposomes prepared from EDPPC, having a higher phase-transition temperature than EDOPC, captured 8-NH?-ATP satisfactorily and released it more slowly than the unsaturated formulations, but were also less cytotoxic. The superior encapsulation efficiencies of the positively charged liposomes can be understood in terms of the electrostatic double layer due to a very high positive charge density on their inner surface. Electrostatic augmentation of encapsulation for small vesicles can be dramatic, easily exceeding an order of magnitude.  相似文献   

18.
Analogs of adenosine triphosphate (ATP) with substitutions at the 8-position have been shown to be cytotoxic to multiple myeloma, one of the most prevalent and serious blood cancers. However, these drugs do not readily cross biological membranes and are very sensitive to phosphatases present in body fluids. To circumvent these disadvantages, 8-substituted ATPs were encapsulated into cationic phospholiposomes generated from cationic phosphatidylcholines (EDOPC; 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, and EDPPC, the corresponding dipalmitoyl homolog), compounds with low toxicity that readily form liposomes. Vortexing was an efficient encapsulation procedure, more so than freeze-thawing. At the lipid:drug ratio of 5:1 (mol/mol), 20% of 8-Br-ATP was encapsulated within EDOPC liposomes. Efficient encapsulation and retention of 8-NH2-ATP required the inclusion of cholesterol. Liposomes of EDOPC:cholesterol (55:45 mole/mole), at a lipid:drug mole ratio of 10:1, captured ~40% of the drug presented. Cytotoxicity assays of this formulation on multiple myeloma cells in culture showed encapsulated drug to be up to 10-fold more effective than free drug, depending upon dose. Intracellular distribution studies (based on fluorescent derivatives of lipids and of ATP) revealed that both liposomes and drug were taken up by multiple myeloma cells, and that uptake of a fluorescent ATP derivative was significantly greater when encapsulated than when free. Liposomes prepared from EDPPC, having a higher phase-transition temperature than EDOPC, captured 8-NH2-ATP satisfactorily and released it more slowly than the unsaturated formulations, but were also less cytotoxic. The superior encapsulation efficiencies of the positively charged liposomes can be understood in terms of the electrostatic double layer due to a very high positive charge density on their inner surface. Electrostatic augmentation of encapsulation for small vesicles can be dramatic, easily exceeding an order of magnitude.  相似文献   

19.
Antibody-directed liposomes (immunoliposomes) are frequently used for targeted drug delivery. However, delivery of large biotherapeutic molecules (i.e. peptides, proteins, or nucleic acids) with immunoliposomes is often hampered by an inefficient cytosolic release of entrapped macromolecules after target cell binding and subsequent endocytosis of immunoliposomes. To enhance cytosolic drug delivery from immunoliposomes present inside endosomes, a pH-dependent fusogenic peptide (diINF-7) resembling the NH(2)-terminal domain of influenza virus hemagglutinin HA-2 subunit was used. Functional characterization of this dimeric peptide showed its ability to induce fusion between liposome membranes and leakage of liposome-entrapped compounds when exposed to low pH. In a second series of experiments, diINF-7 peptides were encapsulated in immunoliposomes to enhance the endosomal escape of diphtheria toxin A chain (DTA), which inhibits protein synthesis when delivered into the cytosol of target cells. Immunoliposomes targeted to the internalizing epidermal growth factor receptor on the surface of ovarian carcinoma cells (OVCAR-3) and containing encapsulated DTA did not show any cytotoxicity toward OVCAR-3 cells. Cytotoxicity was only observed when diINF-7 peptides and DTA were co-encapsulated in the immunoliposomes. Thus, diINF-7 peptides entrapped inside liposomes can greatly enhance cytosolic delivery of liposomal macromolecules by pH-dependent destabilization of endosomal membranes after cellular uptake of liposomes.  相似文献   

20.
Fluorescence microscopy and assays of the cytotoxicity of liposome-encapsulated cytosine arabinoside (araC) have been used to examine the interactions of CV-1 cells with pH-sensitive liposomes, combining phosphatidylethanolamine (PE) with oleic acid or with double-chain protonatable amphiphiles, and with pH-insensitive liposomes combining phosphatidylcholine (PC) and phosphatidylglycerol (PG). Fluorescence-microscopic observations indicate that double-chain protonatable amphiphiles remain tightly associated with pH-sensitive liposomes during incubations with CV-1 cell monolayers, and that cellular uptake of liposomes is strongly promoted by transferrin coupled to the liposome surface. Liposome-encapsulated araC showed much greater cytotoxicity toward CV-1 cells than did the free drug at equivalent concentrations under the same conditions. The cytotoxicity of encapsulated araC was strongly enhanced by liposome-conjugated transferrin and was maximal using pH-sensitive liposomes combining PE with the double-chain protonatable amphiphile N-(N'-oleoyl-2-aminopalmitoyl)serine. However, the drug was also markedly more cytotoxic when encapsulated in other types of transferrin-conjugated liposomes, including pH-insensitive PC/PG/cholesterol liposomes, than in the free form. The cytotoxicity of liposome-encapsulated araC is significantly attenuated by the nucleoside transport inhibitor nitrobenzothioinosine, and fluorescence microscopy using calcein-containing liposomes provides no evidence for efficient fusion between cellular membranes and any of the types of liposomes examined here. Based on these observations, we suggest that the major mechanism for cytoplasmic delivery of liposome-encapsulated araC is the carrier-mediated transport of drug that has been released from liposomes into the endosomal and/or the lysosomal compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号