首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ hybridization was carried out on metaphase-prometaphase chromosomes of PGA-stimulated lymphocytes and bone marrow cells obtained from laboratory rats and mice. Plasmid cloned sequences of human apolipoprotein A-1 (Apo A-1) and ceruloplasmin (CP) cDNA fragments have been used as specific probes labelled in nick-translation reaction with 3HdTTP and 3Hd ATP. The data of our study suggest that Apo A-1 is localized in 11q14-22, 9 A2-4 and 5q36 areas in men, mice and rats, respectively. The DNA sequences of human CP cDNA most probably occupy 3q23-25, 13q24-26 and 15q13-20 areas. Heterologous in situ hybridization of other species with DNA probes does not always give reliable results in gene mapping. Thus, the data of heterologous hybridization should be considered with caution.  相似文献   

2.
Because Bacteroides spp. are obligate anaerobes that dominate the human fecal flora, and because some species may live only in the human intestine, these bacteria might be useful to distinguish human from nonhuman sources of fecal pollution. To test this hypothesis, PCR primers specific for 16S rRNA gene sequences of Bacteroides distasonis, B. thetaiotaomicron, and B. vulgatus were designed. Hybridization with species-specific internal probes was used to detect the intended PCR products. Extracts from 66 known Bacteroides strains, representing 10 related species, were used to confirm the specificity of these PCR-hybridization assays. To test for specificity in feces, procedures were developed to prepare DNA of sufficient purity for PCR. Extracts of feces from 9 humans and 70 nonhumans (cats, dogs, cattle, hogs, horses, sheep, goats, and chickens) were each analyzed with and without an internal positive control to verify that PCR amplification was not inhibited by substances in the extract. In addition, serial dilutions from each extract that tested positive were assayed to estimate the relative abundance of target Bacteroides spp. in the sample. Depending on the primer-probe set used, either 78 or 67% of the human fecal extracts tested had high levels of target DNA. On the other hand, only 7 to 11% of the nonhuman extracts tested had similarly high levels of target DNA. An additional 12 to 20% of the nonhuman extracts had levels of target DNA that were 100- to 1,000-fold lower than those found in humans.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.

Background

The identification of species or species groups with specific oligo-nucleotides as molecular signatures is becoming increasingly popular for bacterial samples. However, it shows also great promise for other small organisms that are taxonomically difficult to tract.

Results

We have devised here an algorithm that aims to find the optimal probes for any given set of sequences. The program requires only a crude alignment of these sequences as input and is optimized for performance to deal also with very large datasets. The algorithm is designed such that the position of mismatches in the probes influences the selection and makes provision of single nucleotide outloops. Program implementations are available for Linux and Windows.  相似文献   

4.
DNA gene probes may become extremely useful in studying gene transfer and adaptation mechanisms in natural bacterial communities, and in the laboratory. This technology allows the detection of specific gene sequence(s) in bacterial species, and can be used to find and monitor recombinant DNA clones in microorganisms being considered for release into the natural environment. It may provide a new generation of highly specific tests that offers advantages over the classical approaches for identifying specific organisms.  相似文献   

5.
Human erythrocytes and lymphocytes were isolated from venous blood and subjected to one of two protocols. In one protocol the suspended cells were labeled with fluorophore (fluorescamine or 12(9)AS). This procedure was followed sequentially by cellular lysis, cellular fractionation, and fluorescence and absorption readings. In the other protocol the suspended cells were lysed, and then the cellular homogenate labeled with fluorophore followed by cellular fractionation and spectroscopy readings. The lymphocytes were fractionated into plasma membrane, cytosol, and nuclear-mitochondrial fractions and the erythrocytes into plasma membrane and cytosol fractions. The results demonstrate that under the given labeling conditions, both fluorescamine and 12(9)AS are highly localized to the plasma membrane of intact human erythrocytes and lymphocytes. Furthermore, by P-31 NMR analysis, fluorophore labeling did not alter cellular high energy phosphate metabolism or cellular permeability to Mn2+. Therefore, these fluorophores are potentially powerful probes of human erythrocyte and lymphocyte plasma membrane dynamics in inherited and acquired disease states.  相似文献   

6.
The family of RTX (RTX representing repeats in the structural toxin) toxins is composed of several protein toxins with a characteristic nonapeptide glycine-rich repeat motif. Most of its members were shown to have cytolytic activity. By comparing the genetic relationships of the RTX toxin genes we established a set of 10 gene probes to be used for screening as-yet-unknown RTX toxin genes in bacterial species. The probes include parts of apxIA, apxIIA, and apxIIIA from Actinobacillus pleuropneumoniae, cyaA from Bordetella pertusis, frpA from Neisseria meningitidis, prtC from Erwinia chrysanthemi, hlyA and elyA from Escherichia coli, aaltA from Actinobacillus actinomycetemcomitans and lktA from Pasteurella haemolytica. A panel of pathogenic and nonpathogenic gram-negative bacteria were investigated for the presence of RTX toxin genes. The probes detected all known genes for RTX toxins. Moreover, we found potential RTX toxin genes in several pathogenic bacterial species for which no such toxins are known yet. This indicates that RTX or RTX-like toxins are widely distributed among pathogenic gram-negative bacteria. The probes generated by PCR and the hybridization method were optimized to allow broad-range screening for RTX toxin genes in one step. This included the binding of unlabelled probes to a nylon filter and subsequent hybridization of the filter with labelled genomic DNA of the strain to be tested. The method constitutes a powerful tool for the assessment of the potential pathogenicity of poorly characterized strains intended to be used in biotechnological applications. Moreover, it is useful for the detection of already-known or new RTX toxin genes in bacteria of medical importance.  相似文献   

7.
Two DNA probes and a number of oligonucleotide probes were designed from the virulence factor genes of Bacillus anthracis. These probes were tested for specificity against 52 B. anthracis strains and 233 Bacillus strains encompassing 23 other species. A rapid slot blotting technique was used for screening the large numbers of isolates involved. All probes tested appeared to be specific for B. anthracis under high stringency conditions. These probes could differentiate between virulent and avirulent strains. The probes were also applied to the detection of B. anthracis in routine environmental and clinical samples. A non-radioactive hybridization and detection system based on digoxigenin-11-dUTP was developed.  相似文献   

8.
Clostridia dominate the rodent intestinal bacterial community and play an important role in physiological functions of the host. However, their ecology and diversity are still unclear. In our previous report, we showed that phylogenetically novel groups of clostridia inhabit the mouse intestine and contribute to the normalization of germfree mice. In this study, five new oligonucleotide probes were designed and applied to detect these clostridial groups that are essential for the normalization of germfree mice. Faecal microbiota of conventional mouse strains and specific pathogen-free mice from different breeding colonies were analysed by fluorescence in situ hybridization using these five probes. Our results showed that the composition of clostridia differed among mouse strains and also among mouse groups of the same inbred strain from different breeding colonies. These five new probes for mouse clostridia were able to detect the difference in clostridial diversity in each mouse group. In addition to Clostridium, we also analysed Bacteroides and Lactobacillus using previously described probes and the number or the frequency of occurrence of Bacteroides was shown to be different among mouse groups analysed. The oligonucleotide probe set including our newly developed and previously described probes used in this study can be applied to monitoring of significant groups of mouse intestinal microbiota.  相似文献   

9.
10.
RNA interference (RNAi) serves as a powerful and widely used gene silencing tool for basic biological research and is being developed as a therapeutic avenue to suppress disease-causing genes. However, the specificity and safety of RNAi strategies remains under scrutiny because small inhibitory RNAs (siRNAs) induce off-target silencing. Currently, the tools available for designing siRNAs are biased toward efficacy as opposed to specificity. Prior work from our laboratory and others’ supports the potential to design highly specific siRNAs by limiting the promiscuity of their seed sequences (positions 2–8 of the small RNA), the primary determinant of off-targeting. Here, a bioinformatic approach to predict off-targeting potentials was established using publically available siRNA data from more than 50 microarray experiments. With this, we developed a specificity-focused siRNA design algorithm and accompanying online tool which, upon validation, identifies candidate sequences with minimal off-targeting potentials and potent silencing capacities. This tool offers researchers unique functionality and output compared with currently available siRNA design programs. Furthermore, this approach can greatly improve genome-wide RNAi libraries and, most notably, provides the only broadly applicable means to limit off-targeting from RNAi expression vectors.  相似文献   

11.
12.
To estimate the possibility of plant genome mapping using human genome probes, the probes fluorescent in situ hybridization (FISH) of human 18S-28S rDNA (clon 22F9 from the LA-13NCO1 library) was carried out on chromosomes of the spring barley Hordeum vulgare L. As a control, wheat rDNA probe (clon pTa71) was taken. Hybridization of the wheat DNA probe revealed two major labelling sites on mitotic barley chromosomes 5I (7H) and 6I (6H), as well as several minor sites. With the human DNA probe, signals were detected in the major sites of the ribosomal genes on chromosomes 5I (7H) and 6I (6H) only when the chromosome preparations were obtained using an optimized technique with obligatory pepsin treatment followed by hybridization. Thus, this study demonstrates that physical mapping of plant chromosomes with human DNA probes that are 60 to 75% homologous to the plant genes is possible. It suggests principal opportunity for the FISH mapping of plant genomes using probes from human genome libraries, obtained in the course of the total sequencing of the human genomes and corresponding to the coding regions of genes with known functions.  相似文献   

13.
14.
15.
To better conceptualize the mechanism underlying the evolution of synonymous codons, we have analysed intragenic codon usage in chosen "regions" of some mouse and human genes. We divided a given gene into two regions: one consisting of a trinucleotide repeat (TNR) and the other consisting of the "rest of the coding region" (RCR). Usually, a TNR is composed of a repetitive single codon, which may reflect its frequency in a gene. In contrast, a non-random frequency of a codon in the RCR versus TNR (or vice versa) of a gene should indicate a bias for that codon within the TNR. We examined this scenario by comparing codon frequency between the RCR and the cognate TNR(s) for a set of human and mouse genes. A TNR length of six amino acids or more was used to identify genes from the Genbank database. Twenty nine human and twenty one mouse genes containing TNRs coding for nine different amino acid runs were identified. The ratio of codon frequency in a TNR versus the corresponding RCR was expressed as "fold change" which was also regarded as a measure of codon bias (defined as preferential use either in TNR or in RCR). Chi-square values were then determined from the distribution of codon frequency in a TNR vs. the cognate RCR. At p<0.001, 22% and 27%, respectively, of human and mouse TNRs showed codon bias. Greater than 40% of the TNRs (29 out of 69 in human, and 18 of 42 in mouse) showed codon bias at p<0.05. In addition, we identify eight single-codon TNRs in mouse and ten in human genes. Thus, our results show intragenic codon bias in both mouse and human genes expressed in diverse tissue types. Since our results are independent of the Codon Adaptation Index (CAI) and starvation CAI, and since the tRNA repertoire in a cell or in a tissue is constant, our data suggest that other constraints besides tRNA abundance played a role in creating intragenic codon bias in these genes.  相似文献   

16.
Susceptibility genes for complex diseases are characterized by reduced penetrance, caused by the influence of other genes, the environment or stochastic events. Recently, positional cloning efforts have yielded several candidate susceptibility genes in different complex disorders such as Crohn's disease and asthma. Within a genetic locus, however, the identification of the effector gene may pose further challenges and require functional studies. I review two examples of such challenges: the cloning of GPR154 (GPRA) and AAA1 on chromosome 7p14 at a susceptibility locus for atopy and asthma, and the study of HLA-Cw6, CCHCR1 (HCR) and CDSN on chromosome 6p21 at PSORS1, the major susceptibility locus for psoriasis. The susceptibility locus for atopy and asthma contains two genes and only one of them is protein coding. We studied its isoform-specific expression in bronchial biopsies and in a mouse model of ovalbumin-induced inflammation of bronchial epithelia. In the PSORS1 locus, strong linkage disequilibrium between genes has made it difficult to distinguish the effects of the three nearby genes. We engineered transgenic mice with either a HCR non-risk allele or the HCR*WWCC risk allele controlled by the cytokeratin-14 promoter. The results suggested that the overexpression of HCR in mouse skin was insufficient to induce a psoriasiform phenotype, but it appeared to induce allele-specific gene expression changes that were similar to those observed in psoriatic skin.  相似文献   

17.
Although metastasis is the principal cause of death cause for colorectal cancer (CRC) patients, the molecular mechanisms underlying CRC metastasis are still not fully understood. In an attempt to identify metastasis-related genes in CRC, we obtained gene expression profiles of 55 early stage primary CRCs, 56 late stage primary CRCs, and 34 metastatic CRCs from the expression project in Oncology (http://www.intgen.org/expo/). We developed a novel gene selection algorithm (SVM-T-RFE), which extends support vector machine recursive feature elimination (SVM-RFE) algorithm by incorporating T-statistic. We achieved highest classification accuracy (100%) with smaller gene subsets (10 and 6, respectively), when classifying between early and late stage primary CRCs, as well as between metastatic CRCs and late stage primary CRCs. We also compared the performance of SVM-T-RFE and SVM-RFE gene selection algorithms on another large-scale CRC dataset and the five public microarray datasets. SVM-T-RFE bestowed SVM-RFE algorithm in identifying more differentially expressed genes, and achieving highest prediction accuracy using equal or smaller number of selected genes. A fraction of selected genes have been reported to be associated with CRC development or metastasis.  相似文献   

18.
The multigene family encoding the five classes of replication-dependent histones has been identified from the human and mouse genome sequence. The large cluster of histone genes, HIST1, on human chromosome 6 (6p21-p22) contains 55 histone genes, and Hist1 on mouse chromosome 13 contains 51 histone genes. There are two smaller clusters on human chromosome 1: HIST2 (at 1q21), which contains six genes, and HIST3 (at 1q42), which contains three histone genes. Orthologous Hist2 and Hist3 clusters are present on mouse chromosomes 3 and 11, respectively. The organization of the human and mouse histone genes in the HIST1 cluster is essentially identical. All of the histone H1 genes are in HIST1, which is spread over about 2 Mb. There are two large gaps (>250 kb each) within this cluster where there are no histone genes, but many other genes. Each of the histone genes encodes an mRNA that ends in a stemloop followed by a purine-rich region that is complementary to the 5' end of U7 snRNA. In addition to the histone genes on these clusters, only two other genes containing the stem-loop sequence were identified, a histone H4 gene on human chromosome 12 (mouse chromosome 6) and the previously described H2a.X gene located on human chromosome 11. Each of the 14 histone H4 genes encodes the same protein, and there are only three histone H3 proteins encoded by the 12 histone H3 genes in each species. In contrast, both the mouse and human H2a and H2b proteins consist of at least 10 non-allelic variants, making the complexity of the histone protein complement significantly greater than previously thought.  相似文献   

19.
There is a pressing need to align the growing set of expressed sequence tags (ESTs) with the newly sequenced human genome. However, the problem is complicated by the exon/intron structure of eukaryotic genes misread nucleotides in ESTs, and the millions of repetitive sequences in genomic sequences. To solve this problem, algorithms that use dynamic programming have been proposed. In reality, however, these algorithms require an enormous amount of processing time. In an effort to improve the computational efficiency of these classical DP algorithms, we developed software that fully utilizes lookup-tables to detect the start- and endpoints of an EST within a given DNA sequence efficiently, and subsequently promptly identify exons and introns. In addition, the locations of all splice sites must be calculated correctly with high sensitivity and accuracy, while retaining high computational efficiency. This goal is hard to accomplish in practice, due to misread nucleotides in ESTs and repetitive sequences in the genome. Nevertheless, we present two heuristics that effectively settle this issue. Experimental results confirm that our technique improves the overall computation time by orders of magnitude compared with common tools, such as SIM4 and BLAT, and simultaneously attains high sensitivity and accuracy against a clean dataset of documented genes.  相似文献   

20.
We have previously isolated and characterized a mouse cDNA orthologous to the human synovial sarcoma associated SS18 (formerly named SSXT and SYT) cDNA. Here, we report the characterization of the genomic structure of the mouse Ss18 gene. Through in silico methods with sequence information contained in the public databases, we did the same for the human SS18 gene and two human SS18 homologous genes, SS18L1 and SS18L2. In addition, we identified a mouse Ss18 processed pseudogene and mapped it to chromosome 1, band A2-3. The mouse Ss18 gene, which is subject to extensive alternative splicing, is made up of 11 exons, spread out over approximately 45 kb of genomic sequence. The human SS18 gene is also composed of 11 exons with similar intron-exon boundaries, spreading out over about 70 kb of genomic sequence. One alternatively spliced exon, which is not included in the published SS18 cDNA, corresponds to a stretch of sequence which we previously identified in the mouse Ss18 cDNA. The human SS18L1 gene, which is also made up of 11 exons with similar intron-exon boundaries, was mapped to chromosome 20 band q13.3. The smaller SS18L2 gene, which is composed of three exons with similar boundaries as the first three exons of the other three genes, was mapped to chromosome 3 band p21. Through sequence and mutation analyses this gene could be excluded as a candidate gene for 3p21-associated renal cell cancer. In addition, we created a detailed BAC map around the human SS18 gene, placing it unequivocally between the CA-repeat marker AFMc014wf9 and the dihydrofolate reductase pseudogene DHFRP1. The next gene in this map, located distal to SS18, was found to be the TBP associated factor TAFII-105 (TAF2C2). Further analogies between the mouse Ss18 gene, the human SS18 gene and its two homologous genes were found in the putative promoter fragments. All four promoters resemble the promoters of housekeeping genes in that they are TATA-less and embedded in canonical CpG islands, thus explaining the high and widespread expression of the SS18 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号