首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nest box population of Tengmalm's owls (Aegolius funereus) in northern Sweden was studied to investigate the effects of extra food on the sex ratio between hatching and fledging in this sexually size-dimorphic species. The brood size and brood sex ratio of supplementary-fed and control broods were compared. Newly hatched nestlings were blood sampled and sexed by polymerase chain reaction (PCR) amplification of the sex-linked CHD1Z and CHD1W genes. The brood sex ratio at hatching was strongly male biased (65%); this was also the case in broods where all eggs hatched (72%). There was no relationship between hatch order and sex ratio, and hatching sex ratio did not vary significantly with laying date. Brood size decreased between hatching and fledging, but did not differ between fed and control broods at either stage. Brood sex ratio did not differ between hatching and fledging, and fledging sex ratio did not differ between fed and control broods. It was concluded that, at least during the year in which the study was carried out, feeding had no effect on brood reduction, and that male and female nestlings did not show any differential mortality. The mechanisms behind the male-biased sex ratio at hatching, and any possible adaptive reasons for it, are not known.  相似文献   

2.
In six species of dimorphic raptors (females larger than males)and one passerine (males larger than females), the sex ratioat fledging varied systematically with brood size at fledging.In all species the strongest bias toward the smaller sex wasestablished in the largest as well as the smallest broods; amore even distribution of males and females was observed inbroods of intermediate size. We explored a specific differentialmortality explanation for this sex ratio variation. Our hypothesispostulates that variation in mortality is caused by differencesin food demand between broods of the same size, due to theirsex composition. Data from the marsh harrier Circus aeruginosuson gender-related food demand and overall nestling mortalitywere used to predict the frequency of surviving males and femalesat fledging, assuming an even sex ratio at hatching and randommortality with respect to both sexes within broods. The modelquantitatively fits the marsh harrier data well, especiallyin broods originating from large dutches. Although we anticipatethat other mechanisms are also involved, the results supportthe hypothesis of sex-ratio-dependent mortality, differentialbetween broods, as the process generating the observed brood-sizedependence of fledgling sex ratios in sexually dimorphic birds.  相似文献   

3.
Complex sex allocation in the laughing kookaburra   总被引:8,自引:5,他引:3  
In groups of the cooperatively breeding laughing kookaburra(Dacelo novaeguineae), offspring sex varied with the type ofsocial group and with hatch rank. Groups with female helpers,especially if all helpers were female, had male-biased clutchand fledging sex ratios. Groups without female helpers (unassistedpairs or male-only helpers) had female-biased clutch and fledgingsex ratios. Breeding females responded facultatively to increasesin the number of female helpers in their group by producingmore male eggs. These biases may occur if breeding femalestry to limit the number of daughters recruited into their groupbecause unlike male helpers, female helpers depress the breedingsuccess of their parents. Across all nests, two-thirds of first-hatchedyoung were male, two-thirds of second-hatched young were female, and the sex ratio of third-hatched young was even. Hatch ranksex ratios also varied dramatically between different typesof social groups, from 16.7% for second-hatched nestlings ofunassisted pairs to 100% for first-hatched nestlings of groupswith only female helpers. A corollary of the relationship betweenhatch rank and sex was that hatching sex sequences were distributed nonrandomly: all groups avoided hatching a daughter first followedby a son (FM). Sibling competition is aggressive and sometimesfatal. Since females grow to be 15% larger than males the hatchingsequence of sexes could affect nestling growth and mortality.However, an exhaustive analysis found little evidence thatgrowth or survival of males was compromised if hatched aftera sister. The small number of FM sequences may only have occurredin nests that were able to ameliorate any negative consequences.Alternatively, when clutch size is small and fledging successunpredictable because of brood reduction, the preferred broodsex ratio may be contingent on the number of fledged young,making it advantageous to order the sexes in the brood.  相似文献   

4.
Differences in the survival rates of males and females over the period from hatching to recruitment can have important impacts on individual fitness and population demographics. However, whilst the influence of an individual's sex on nestling growth and survival has been well studied, less is known about sex‐specific survival over the period between fledging and recruitment. Here, we analyse nestling survival and recruitment in an isolated, island population of house sparrows (Passer domesticus), using data collected over a 4‐year period. Nestlings that had a greater mass at 1 day old were more likely to fledge. Recruitment was also positively associated with day 11 mass. The positive influence of nestling mass on survival to fledging also increased as brood size increased. There was no difference in the survival of male and female individuals prior to fledging. In contrast, over the period from fledging to recruitment, females had significantly less mortality than males. Recruitment was also positively associated with 11‐day‐old mass. Neither the nestling sex ratio nor the fledging sex ratio deviated from 0.5, but the sex ratio amongst recruits was female biased. Our study shows that sex can influence juvenile survival, but also shows that its effect varies between different life‐history stages; therefore, these stages should be considered separately if we want to understand at what point sex‐specific differences in juvenile survival occur. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 680–688.  相似文献   

5.
When the costs of rearing males and females differ progeny sex ratios are expected to be biased toward the less expensive sex. Blue-footed booby (Sula nebouxii) females are larger and roughly 32% heavier than males, thus presumably more costly to rear. We recorded hatching and fledging sex ratios in 1989, and fledging sex ratios during the next 5 years. In 1989, the sample of 751 chicks showed male bias at hatching (56%) and at fledging (57% at ˜90 days). Fledging sex ratios during the five subsequent reproductive seasons were at unity (1 year) or male-biased, varying from 56% to 70%. Male bias was greater during years when mean sea surface temperature was warmer and food was presumably in short supply. During two warm-water years (only) fledging sex ratio varied with hatching date. Proportions of male fledglings increased with date from 0.48 to 0.73 in 1994, and from 0.33 to 0.79 in 1995. Similar results were obtained when the analysis was repeated using only broods with no nestling mortality, suggesting that the overall increase in the proportion of males over the season was the result of sex ratio adjustments at hatching. The male-biased sex ratio, and the increased male bias during poor breeding conditions supports the idea that daughters may be more costly than sons, and that their relative cost increases in poor conditions. Received: 3 February 1998 / Accepted: 12 September 1998  相似文献   

6.
Bias in sex ratios at hatching and sex specific post hatching mortality in size dimorphic species has been frequently detected, and is usually skewed towards the production and survival of the smaller sex. Since common terns Sterna hirundo show a limited sexual size dimorphism, with males being only about 1–6% larger than females in a few measurements, we would expect to find small or no differences in production and survival of sons and daughters. To test this prediction, we carried out a 2-year observational study on sex ratio variation in common terns at hatching and on sex specific post hatching mortality. Sons and daughters hatched from eggs of similar volume. Post hatching mortality was heavily influenced by hatching sequence. In addition, we detected a sex specific mortality bias towards sons. Overall, hatching sex ratio and sex specific mortality resulted in fledging sex ratios 8% biased towards females. Thus, other reasons than body size may be influencing the costs of rearing sons. Son mortality was not homogeneous between brood sizes, but greater for two-chick broods. Since adults rearing two-chick broods were younger, lighter and bred consistently later than those rearing three-chick broods, it is suggested that lower capacity of two-chick brood parents adversely affected offspring survival of sons. Though not significantly, two-chick broods tended to be female biased at hatching, perhaps to counteract the greater male-biased nestling mortality. Thus, population bias in secondary sex ratio is not limited to strongly size dimorphic species, but species with a slight sexual size dimorphism can also show sex ratio bias through a combination of differential production and mortality of sons and daughters.  相似文献   

7.
If parental allocation to each offspring sex has the same cost/benefit ratio, Fisher's hypothesis predicts a sex ratio biased towards the cheaper sex. However, in dimorphic birds there is little evidence for this, especially at hatching. We investigated the pre‐fledgling 1) sex ratio, 2) body condition and 3) sex‐differential mortality in a population of the glossy ibis Plegadis falcinellus, in southern Spain between 2001 and 2011. We defined two age groups for the period between hatching and fledging. We also compared pre‐fledgling with the autumn sex ratio. Metabolic rates were estimated by the doubly labeled water (DLW) technique to establish that sons (the bigger sex) were 18% more energy demanding than daughters, and to compute the predicted Fisher's sex ratio (0.465). As population size increased between years, body condition decreased in both sexes, and mortality increased more for daughters than sons prior to fledging. At the same time, the proportion of males among chicks close to fledging increased (average sex ratio: 0.606) while the proportion close to hatching decreased (average sex ratio: 0.434, in line with Fisher's prediction). Furthermore, the proportions of males at fledging and the following autumn were negatively correlated across years. We suggest that, as population density increased and conditions worsened the larger sex had relatively higher survival. These differences in survival produce a shift from a facultative female‐biased sex ratio at hatching into a non‐facultative male‐biased sex ratio of fledglings. Additionally, the excess of males at fledging was counterbalanced by sex‐related dispersal during the autumn. Overall, glossy ibis sex ratio is a product of a combination of facultative and non‐facultative adjustments triggered by environmental conditions, driven by rapid population growth, and mediated by highly interrelated life‐history traits such as body condition, mortality, and dispersal.  相似文献   

8.
In sexually size‐dimorphic species, brood sex composition may exert differential effects on sex‐specific mortality. We investigated the sex‐specific mortality and body condition in relation to brood sex composition in nestlings of the black‐billed magpie Pica pica. Neither significantly sex‐biased production at hatching nor overall sex‐biased mortality during the nestling period was found. Sex‐specific mortality as a function of brood sex composition, however, differed between female and male nestlings. We found higher mortality for females in male‐biased broods and higher mortality for males in female‐biased broods, a phenomenon that we call ‘rarer‐sex disadvantage’. As a result, fledging sex ratios became more biased in the direction of bias at hatching, a phenomenon that cannot be readily explained by previous hypotheses for sex‐specific mortality. Two temporal variables, fledging date and laying date, were also correlated with sex‐specific mortality: female nestlings in earlier broods experienced higher mortality than male nestlings whereas male nestlings in later broods experienced higher mortality. We suggest that this unusual pattern of mortality may be explained by adaptive adjustments of brood sex composition by parents, either through the effects of a slight sex difference in offspring dispersal patterns on parental fitness, or owing to sex differences as regards the benefits of early fledging.  相似文献   

9.
Anouk Spelt  Lorien Pichegru 《Ibis》2017,159(2):272-284
Biased offspring sex ratio is relatively rare in birds and sex allocation can vary with environmental conditions, with the larger and more costly sex, which can be either the male or female depending on species, favoured during high food availability. Sex‐specific parental investment may lead to biased mortality and, coupled with unequal production of one sex, may result in biased adult sex ratio, with potential grave consequences on population stability. The African Penguin Spheniscus demersus, endemic to southern Africa, is an endangered monogamous seabird with bi‐parental care. Female adult African Penguins are smaller, have a higher foraging effort when breeding and higher mortality compared with adult males. In 2015, a year in which environmental conditions were favourable for breeding, African Penguin chick production on Bird Island, Algoa Bay, South Africa, was skewed towards males (1.5 males to 1 female). Males also had higher growth rates and fledging mass than females, with potentially higher post‐fledging survival. Female, but not male, parents had higher foraging effort and lower body condition with increasing number of male chicks in their brood, thereby revealing flexibility in their parental strategy, but also the costs of their investment in their current brood. The combination of male‐biased chick production and higher female mortality, possibly at the juvenile stage as a result of lower parental investment in female chicks, and/or at the adult stage as a result of higher parental investment, may contribute to a biased adult sex ratio (ASR) in this species. While further research during years of contrasting food availability is needed to confirm this trend, populations with male‐skewed ASRs have higher extinction risks and conservation strategies aiming to benefit female African Penguin might need to be developed.  相似文献   

10.
Major theories compete to explain the macroevolutionary trends observed in sexual size dimorphism (SSD) in animals. Quantitative genetic theory suggests that the sex under historically stronger directional selection will exhibit greater interspecific variance in size, with covariation between allometric slopes (male to female size) and the strength of SSD across clades. Rensch''s rule (RR) also suggests a correlation, but one in which males are always the more size variant sex. Examining free-living pelagic and parasitic Copepoda, we test these competing predictions. Females are commonly the larger sex in copepod species. Comparing clades that vary by four orders of magnitude in their degree of dimorphism, we show that isometry is widespread. As such we find no support for either RR or for covariation between allometry and SSD. Our results suggest that selection on both sexes has been equally important. We next test the prediction that variation in the degree of SSD is related to the adult sex ratio. As males become relatively less abundant, it has been hypothesized that this will lead to a reduction in both inter-male competition and male size. However, the lack of such a correlation across diverse free-living pelagic families of copepods provides no support for this hypothesis. By comparison, in sea lice of the family Caligidae, there is some qualitative support of the hypothesis, males may suffer elevated mortality when they leave the host and rove for sedentary females, and their female-biased SSD is greater than in many free-living families. However, other parasitic copepods which do not appear to have obvious differences in sex-based mate searching risks also show similar or even more extreme SSD, therefore suggesting other factors can drive the observed extremes.  相似文献   

11.
Temperature effects on ectotherms are widely studied particularly in insects. However, the life-history effects of temperature experienced during a window of embryonic development, that is egg stage, have rarely been considered. We simulated fluctuating temperatures and examined how this affects the operational sex ratio (OSR) of hatching as well as nymph and adult fitness in a leafhopper, Scaphoideus titanus. Specifically, after a warm or cold incubation we compared males and females hatching dynamics with their consequences on the sex ratio in the course of time, body size, weight, and developmental rate of the two populations, all reared on the same posthatching temperature. Males and females eggs respond differently, with females more sensitive to variation in incubation temperature. The different responses of both sexes have consequences on the sex ratio dynamic of hatchings with a weaker protandry after warm incubation. Temperatures experienced by eggs have more complex consequences on posthatching development. Later nymphal instars that hatched from eggs exposed to warm temperature were larger and bigger but developmental rate of the two populations was not affected. Our study demonstrates how incubation temperature could affect operational sex ratio and posthatching development in an insect and how this may be critical for population growth.  相似文献   

12.
Unequal sex ratios can reduce the productivity of animal populations and are especially prevalent among endangered species. A cohort of 333 Roseate Tern Sterna dougallii chicks at a site where the adult sex ratio was skewed towards females was sexed at hatching and followed through fledging and return to the breeding area, and subsequently during adulthood. The entire regional metapopulation was sampled for returning birds. Prebreeding survival (from fledging to age 3 years) was lower in males than in females, but only among B‐chicks (second in hatching order). Prebreeding survival also declined with hatching date. The proportion of females in this cohort increased from 54.6% at hatching to 56.2% at fledging and to an estimated 58.0% among survivors at age 3 years. This was more than sufficient to explain the degree of skew in the sex ratio of the adult population, but changes in this degree of skew during the study period make it difficult to identify the influence of a single cohort of recruits. Many studies of prebreeding survival in other bird species have identified effects of sex, hatching order or hatching date, but no previous study has tested for effects of all three factors simultaneously.  相似文献   

13.
Few investigators have studied the offspring sex ratios of monomorphic shorebirds because visually determining the sex of juveniles is not possible. We investigated the ontogeny of an observed male‐biased adult sex ratio in the federally endangered Great Lakes population of Piping Plovers (Charadrius melodus). We determined sex ratios at hatching, banding ( = 9.0 d old), and fledging (23 d old) to determine if the bias arises during the pre‐fledging period and, if so, at what stage. For three consecutive years (2012–2014), we used a molecular technique to determine the sex of 307 chicks and followed individuals to a stage where survival to fledging could be inferred. Within fully‐sexed broods at hatching, the average proportions of male chicks (2012–2014) were 0.47, 0.58, and 0.54, respectively. At banding, the sex ratio remained unbiased in 2012 (0.51), but was male‐biased in 2013 (0.59) and 2014 (0.57). Overall, the sex ratio did not differ significantly from parity at fledging in 2012, but did differ during 2013 (P = 0.01) and 2014 (P = 0.03). Using logistic regression models fit using Bayesian inference, we found strong support for a sex effect on chick survival to fledging age, with higher male than female survival (μmale = 0.83 [95% credible interval: 0.75–0.90]; μfemale = 0.71 [0.61–0.80]). These results suggest that the male‐biased adult sex ratio in Piping Plovers arises, in part, due to differential survival during the pre‐fledging period. This difference did not result from female chicks hatching later in the season or weighing less at banding than male chicks, factors that could potentially affect the likelihood of survival. Future investigations into possible behavioral‐ or weather‐related influences on sex‐specific survival are needed. Our results have important implications for (1) identifying management efforts needed to increase recruitment given female‐biased chick mortality, and (2) conducting population viability analyses, which frequently assume an unbiased fledgling sex ratio.  相似文献   

14.
Råberg L  Stjernman M  Nilsson JA 《Oecologia》2005,145(3):496-503
In birds and mammals with sexual size dimorphism (SSD), the larger sex is typically more sensitive to adverse environmental conditions, such as food shortage, during ontogeny. However, some recent studies of altricial birds have found that the larger sex is less sensitive, apparently because large size renders an advantage in sibling competition. Still, this effect is not an inevitable outcome of sibling competition, because several studies of other species of altricial birds have found the traditional pattern. We investigated if the sexes differ in environmental sensitivity during ontogeny in the blue tit, a small altricial bird with c. 6% SSD in body mass (males larger than females). We performed a cross-fostering and brood size manipulation experiment during 2 years to investigate if the sexes were differently affected as regards body size (body mass, tarsus and wing length on day 14 after hatching) and pre-fledging survival. We also investigated if the relationship between body size and post-fledging survival differed between the sexes. Pre-fledging mortality was higher in enlarged than in reduced broods, representing poor and good environments, respectively, but the brood size manipulation did not affect the mortality rate of males and females differently. In both years, both males and females were smaller on day 14 after hatching in enlarged as compared to reduced broods. In one of the years, we also found significant Sex × Experiment interactions for body size, such that females were more affected by poor environmental conditions than that of males. Body size was positively correlated with post-fledging survival, but we found no interactive effects of sex and morphological traits on survival. We conclude that in the blue tit, females (the smaller sex) are more sensitive to adverse environmental conditions which, in our study, was manifest in terms of fledgling size. A review of published studies of sex differences in environmental sensitivity in sexually size-dimorphic altricial birds suggests that the smaller sex is more sensitive than the larger sex in species with large brood size and vice versa.  相似文献   

15.
An adaptive explanation for environmental sex determination is that it promotes sexual size dimorphism when larger size benefits one sex more than the other. That is, if growth rates are determined by environment during development, then it is beneficial to match developmental environment to the sex that benefits more from larger size. However, larger size may also be a consequence of larger size at hatching or growing for a longer time, i.e., delayed age at first reproduction. Therefore, the adaptive significance of sexual size dimorphism and environmental sex determination can only be interpreted within the context of both growth and maturation. In addition, in those animals that continue to grow after maturation, sexual size dimorphism at age of first reproduction could differ from sexual size dimorphism at later ages as growth competes for energy with reproduction and maintenance. I compared growth using annuli on carapace scales in two species of box turtles (Terrapene carolina and T. ornata) that have similar patterns of environmental sex determination but, reportedly, have different patterns of sexual size dimorphism. In the populations I studied, sexual size dimorphism was in the same direction in both species; adult females were, on average, larger than adult males. This was due in part to males maturing earlier and therefore at smaller sizes than females. In spite of similar patterns of environmental sex determination, patterns of growth differed between the species. In T. carolina, males grew faster than females as juveniles but females had the larger asymptotic size. In T. ornata, males and females grew at similar rates and had similar asymptotic sizes. Sexual size dimorphism was greatest at maturation because, although males matured younger and smaller, they grew more as adults. There was, therefore, no consistent pattern of faster growth for females that may be ascribed to developmental temperature. Received: 20 March 1996 / Accepted: 10 March 1998  相似文献   

16.
Sexual size dimorphism (SSD) among adults is commonly observed in animals and is considered to be adaptive. However, the ontogenic emergence of SSD, i.e. the timing of divergence in body size between males and females, has only recently received attention. It is widely acknowledged that the ontogeny of SSD may differ between species, but it remains unclear how variable the ontogeny of SSD is within species. Kentish Plovers Charadrius alexandrinus and Snowy Plovers C. nivosus are closely related wader species that exhibit similar, moderate (c. 4%), male‐biased adult SSD. To assess when SSD emerges we recorded tarsus length variation among 759 offspring in four populations of these species. Tarsus length of chicks was measured on the day of hatching and up to three times on recapture before fledging. In one population (Mexico, Snowy Plovers), males and females differed in size from the day of hatching, whereas growth rates differed between the sexes in two populations (Turkey and United Arab Emirates, both Kentish Plovers). In contrast, a fourth population (Cape Verde, Kentish Plovers) showed no significant SSD in juveniles. Our results suggest that adult SSD can emerge at different stages of development (prenatal, postnatal and post‐juvenile) in different populations of the same species. We discuss the proximate mechanisms that may underlie these developmental differences.  相似文献   

17.
In the jackdaw Corvus monedula , eggs hatch asynchronously with the youngest chicks in the brood often starving to death. So far, it is unknown whether there are sex differences in vulnerability to starvation. Adult females are smaller than males suggesting that daughters should be cheaper to produce than sons and so, less likely to starve when nest conditions are poor. Here, we determine whether sex, laying order and season interact to influence growth and fledging success. In a nestbox population of jackdaws, we found a non-significant female bias at both hatching (112:120) and fledging (37:52). Generalised linear models revealed that parents seemed to be investing differently in sons and daughters depending on their chances of success. Broods produced late in the season were significantly female biased, particularly those from small clutches. Females hatched towards the end of the season, when conditions were poor, were more likely to fledge than males. Nestlings that were relatively large at hatching were more likely to fledge. This effect was particularly important for last hatched individuals. Overall, males had a higher mortality rate than females. The most likely cause was starvation due to higher energetic requirements, because males were larger than females at fledging. We suggest that in species with brood reduction, sex-biased mortality may be at least as important as primary sex ratio manipulation in determining avian sex ratios.  相似文献   

18.
We studied the effect of hatching date on breeding performance (chick growth and mortality) and phenology (creching and fledging ages) of the chinstrap penguin during three years. The year affected every variable considered, probably due to pack-ice persistence and food availability differences between years. Hatching date had slight or no effect on mortality and early growth, but was negatively correlated with creching age, which, in turn, was positively related to final size. The decision to leave the chicks unguarded does not seem to be based on the condition of the chicks, but on that of adults. Fledging age was negatively correlated with hatching date, and this effect was more marked in the year with poor growth performance. Given the short time available for breeding in Antarctica, there must be conflicting pressures between investing in feeding chicks and advancing the period of premoult resource storage, this explaining the strong relationship between hatching dates and subsequent phenological events (creching and fledging). In this kind of study, it may be important to remove the effect of inter-year variation before assessing the possible effects of other variables.  相似文献   

19.
Inequality in male and female numbers may affect population dynamics and extinction probabilities and so has significant conservation implications. We previously demonstrated that Brown‐headed Cowbird Molothrus ater brood parasitism of Song Sparrows Melospiza melodia results in a 50% reduction in the proportion of female host offspring by day 6 post‐hatch and at fledging, which modelling demonstrated is as significant as nest predation in affecting demography. Many avian brood parasites possess special adaptations to parasitize specific hosts so this sex‐ratio effect could be specific to the interaction between these two species. Alternatively, perturbations associated with brood parasitism per se (e.g. the addition of an extra, larger, unrelated nestling), rather than a Cowbird nestling specifically, may be responsible. We experimentally eliminated the effects of Cowbird‐specific traits by parasitizing nests with a conspecific nestling rather than a Cowbird, while otherwise emulating the circumstances of Cowbird parasitism by adding an extra, larger (2‐day‐older), unrelated Song Sparrow nestling to Song Sparrow nests. Our parasitism treatment led to few host offspring deaths and no evidence of male‐biased sex ratios by day 6 post‐hatch. However, after day 6, female nestling mortality rates increased significantly in experimentally parasitized nests, resulting in a 60% reduction in the proportion of females fledging. Cowbird‐specific traits are thus not necessary to cause female‐biased host nestling mortality and far more general features associated with Cowbird parasitism instead appear responsible. Our results suggest, however, that Cowbird‐specific traits may help accelerate the pace of female host deaths. The conservation implications of our results could be wide reaching. Cowbirds are unrelated to all their hosts, are larger than the great majority, and a Cowbird nestling's presence can mean there is an extra mouth to feed. Thus, sex‐biased mortality in parasitized nests could be occurring across a range of host species.  相似文献   

20.
Sexual size dimorphism (SSD), a difference in body size between the sexes, occurs in many animal species. Although the larger sex is often considered invariable within species, patterns of selection may result in interpopulation variation or even reversal of SSD. We evaluated correlations between latitude and female body size, male body size, and relative body size (male body size/female body size) in 22 populations (ranging from 37 degrees N to 49 degrees N) of sea-run masu salmon (Oncorhynchus masou) that spawn in rivers along the Sea of Japan coast. Male size and the relative body size increased with latitude, but female size did not correlate with latitude. In addition, increase in male size with latitude was sufficient to result in a reversal of SSD, the switch-point being around 45 degrees N. We suggest that the positive correlation between latitude and male size is due to increasing operational sex ratios or sexual selection on sea-run male body size that result from sex-biased patterns of anadromy. In conclusion, our study provides the first example of predictable geographic variation in SSD shaped by apparent patterns of sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号