首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The covalent labeling of the alpha subunit of lamb kidney Na+,K+-ATPase by fluorescein 5'-isothiocyanate at Lys-501 has generally been assumed to occur at the ATP binding site. We have found that the peptide sequence 496HLLVMKGAPER506 serves as the antigenic determinant for monoclonal antibody M8-P1-A3. This antibody binds to both native and FITC-labeled enzyme and while this epitope undergoes ligand-induced changes these changes are not involved in either enzyme function or the E1 in equilibrium E2 conformational changes monitored by FITC-fluorescence intensity.  相似文献   

2.
The fluorescein 5'-isothiocyanate (FITC)-labeled lamb kidney Na+/K+-ATPase has been used to investigate enzyme function and ligand-induced conformational changes. In these studies, we have determined the effects of two monoclonal antibodies, which inhibit Na+/K+-ATPase activity, on the conformational changes undergone by the FITC-labeled enzyme. Monitoring fluorescence intensity changes of FITC-labeled enzyme shows that antibody M10-P5-C11, which inhibits E1 approximately P intermediate formation (Ball, W.J. (1986) Biochemistry 25, 7155-7162), has little effect on the E1 in equilibrium E2 transitions induced by Na+, K+, Mg2+ Pi or Mg2+. ouabain. The M10-P5-C11 epitope, which appears to reside near the ATP-binding site, does not significantly participate in these ligand interactions. In contrast, we find that antibody 9-A5 (Schenk, D.B., Hubert, J.J. and Leffert, H.L. (1984) J. Biol. Chem. 259, 14941-14951) inhibits both the Na+/K+-ATPase and p-nitrophenylphosphatase activity. Its binding produces a 'Na+-like' enhancement in FITC fluorescence, reduces the ability of K+ to induce the E1 in equilibrium E2 transition and converts E2.K+ to an E1 conformation. Mg2+ binding to the enzyme alters both the conformation of this epitope region and its coupling of ligand interactions. In the presence of Mg2+, 9-A5 binding stabilizes an E1.Mg2+ conformation such that K+-, Pi- and ouabain-induced E1----E2 or E1----E2-Pi transitions are inhibited. Oubain and Pi added together overcome this stabilization. These studies indicate that the 9-A5 epitope participates in the E1 in equilibrium E2 conformational transitions, links Na+-K+ interactions and ouabain extracellular binding site effects to both the phosphorylation site and the FITC-binding region. Antibody-binding studies and direct demonstration of 9-A5 inhibition of enzyme phosphorylation by [32P]Pi confirm the results obtained from the fluorescence studies. Antibody 9-A5 has also proven useful in demonstrating the independence of Mg2+ ATP and Mg2+Pi regulation of ouabain binding. In addition, [3H]ouabain and antibody-binding studies demonstrate that FITC-labeling alters the enzyme's responses to Mg2+ as well as ATP regulation.  相似文献   

3.
A monoclonal antibody (mAb50c) against the native porcine renal Na+/K(+)-transporting adenosinetriphosphatase (EC 3.6.1.37, ATP phosphohydrolase) (Na+/K(+)-ATPase) was characterized. The antibody could be classified as a conformation-dependent antibody, since it did not bind to Na+/K(+)-ATPase denatured by detergent and its binding was affected by the normal conformational changes of the enzyme induced by ligands. The binding was the greatest in the presence of Na+, ATP or Mg2+ (E1 form), slightly less in the presence of K+ (E2K form) and the least when the enzyme was phosphorylated, especially in the actively hydrolyzing form in the presence of Na+, Mg2+ and ATP. The antibody inhibited both the Na+,K(+)-ATPase activity and the K(+)-dependent p-nitrophenylphosphatase activity by 25%, but it had no effect on Na(+)-dependent ATPase activity. The antibody partially inhibited the fluorescence changes of the enzyme labeled with 5'-isothiocyanatofluorescein after the addition of orthophosphate and Mg2+, and after the addition of ouabain. Proteolytic studies suggest that a part of the epitope is located on the cytoplasmic surface of the N-terminal half of the alpha-subunit.  相似文献   

4.
Treatment of purified preparations of porcine Na+,K(+)-ATPase with phospholipase A2, MgCl2 and NaVO3 leads to the formation of two-dimensional crystals exclusively in a dimeric configuration. Two-dimensional computer-averaged projections of the electron microscopy images of the crystalline enzyme with bound Fab fragments of monoclonal antibody M10-P5-C11 were accomplished using image enhancement software and showed that the antibody fragments caused only a modest increase in the unit cell size, while reducing the extent of asymmetry of the two promoters in each unit cell. The digital imaging also showed that the antibody's epitope on the alpha subunit resides on the 'lobe' or 'hook' region of the intracellular portion of the enzyme. Since functional studies indicate that M10-P5-C11 binds near or between the ATP binding site and the phosphorylation site, this visualized 'lobe' region of alpha may comprise the catalytic site. In addition, the binding of another inhibitory antibody, 9-A5, has been found to prevent crystal formation and the presence of the carbohydrate sugars on the enzyme's beta subunit shown to be required for crystal formation.  相似文献   

5.
A Abbott  W J Ball 《Biochemistry》1992,31(45):11236-11243
Monoclonal antibody M7-PB-E9 binds the sheep kidney Na+,K(+)-ATPase alpha-subunit with high affinity (Kd = 3 nM) and inhibits enzyme turnover in competition with ATP, and, like ATP, in the presence of Mg2+, it stimulates the rate of ouabain binding [Ball, W. J. (1984) Biochemistry 23, 2275-2281]. In this study, covalent attachment of fluorescein 5'-isothiocyanate (FITC) at (or near) the enzyme's ATP binding site did not alter the antibody's affinity for alpha nor did bound antibody alter the anisotropy of (r = 0.36) or the solvent accessibility of iodide to bound FITC. Further, in its E1Na+ conformation (4 mM NaCl), the enzyme's affinity for the ATP congener eosin was unaltered by the bound antibody (Kd = 9 nM). In contrast, partial E2 conformations induced by KCl lowered eosin affinities (0.2 mM KCl, Kd = 28 nM; 0.4 mM, Kd = 86 nM), and M7-PB-E9 reduced these affinities further (Kd = 66 and 130 nM, respectively). By monitoring the fluorescence changes of the FITC-labeled enzyme, the antibody was found to assist several ligand-induced conformational transitions from E1 (E1Na+ or E1Tris) to E2 (E2K+, E2-P(i)Mg2+, or E2Mg2+.ouabain) states, and inhibit the E2K(+)-->E1Na+ transition. Antibody binding alone, however, did not appear to significantly alter enzyme conformation. The antibody therefore is not directed against the ATP site but binds to a region of alpha distinct from any ligand binding site and which plays an important role in the E1<-->E2 transitions.  相似文献   

6.
The Na+,K(+)-ATPase alpha 1, alpha 2, and alpha 3 subunit isoforms have been shown to be differentially expressed in the nonpigmented (NPE) and pigmented (PE) cells of the ocular ciliary epithelium (CE) (Martin-Vasallo et al., J. Cell. Physiol., 141:243-252, 1989; Ghosh et al., J. Biol. Chem., 265:2935-2940, 1990). In this study we analyzed and compared the pattern of expression of the multiple Na+,K(+)-ATPase alpha (alpha 1, alpha 2, alpha 3) subunit genes with the pattern of expression of the Na+,K(+)-ATPase beta (beta 1, beta 2) subunit genes along the bovine CE. We have selected three regions in the CE, referred to as 1) the anterior region of the pars plicata, near the iris; 2) the middle region of the pars plicata; and 3) the posterior region of the pars plana, near the ora serrata. Using isoform-specific cDNA probes and antibodies for the Na+,K(+)-ATPase alpha 1, alpha 2, alpha 3, beta 1, and beta 2 subunits on Northern and Western blot analysis, we found that mRNA and polypeptides are expressed in all three CE regions with different abundance. The pattern of expression of alpha and beta isoforms detected along the NPE cell layers suggests a gradient of alpha 1, alpha 2, alpha 3, beta 1, and beta 2 mRNAs and polypeptides that correlates with decreasing Na+,K(+)-ATPase activity from the most anterior region at the pars plicata towards the posterior region at the ora serrata. We also found marked differences in the pattern of immunolocalization of Na+,K(+)-ATPase alpha 1, alpha 2, alpha 3, beta 1, and beta 2 subunit isoforms in different regions of the CE. In the anterior region, NPE cells stained intensely at the basal lateral membrane with specific monoclonal and polyclonal antibodies for each of the alpha (alpha 1, alpha 2, alpha 3) and beta (beta 1, beta 2) Na,K-ATPase isoforms. In the middle and posterior regions of the CE, NPE cells showed lower or absent levels of staining with alpha 1, alpha 2, alpha 3, and beta 1 antibodies, although staining with beta 2 was abundant. In contrast, PE cells throughout the CE were stained at the basal lateral membrane by antibodies to alpha 1 and beta 1, while no staining signals were detected with the rest of the antibodies (i.e. alpha 2, alpha 3, and beta 2). Our results support the conclusion that the three alpha and two beta isoforms of the Na+,K(+)-ATPase are differentially expressed in the two cell layers that make up the CE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

8.
The monoclonal antibody (mAb) 95-111 binds the alpha subunit of (H+,K+)-ATPase and inhibits the K(+)-ATPase activity. To map the epitope, all of the partial sequences of the alpha subunit were expressed in Escherichia coli HB101 using rabbit alpha subunit cDNA restriction fragments ligated into PuEx vector. Bacterial recombinant lysates were separated by sodium dodecyl sulfate-gel electrophoresis, and the epitope was detected by Western blotting. The antibody site was mapped between Cys529 and Glu561. This is close to the Lys517 that binds fluorescein isothiocyanate (FITC) and is considered to be between M4 and M5 close to the ATP binding domain. However, the mAb inhibition of ATPase is not ATP-competitive but is K(+)-competitive with a KI of 2 x 10(-9) M. The mAb also inhibits K+ quench of FITC fluorescence competitively with a KI of 8 x 10(-9) M. The K+ activation of ATPase activity and quench of FITC fluorescence are dependent on K+ binding to an E2 form of the enzyme from the extracytoplasmic surface. The mAb epitope is cytoplasmic since the K(+)-ATPase activity of ion-tight gastric vesicles is inhibited. The 125I-mAb 95-111 binds to a single class of sites with an apparent KD of 2.3 +/- 0.8 x 10(-9) M and K+ does not displace bound mAb. Hence, antibody binding to a cytoplasmic Cys529-Glu561 epitope allosterically competes with K(+)-dependent reactions at extracytoplasmic sites.  相似文献   

9.
M Wada  O Urayama  S Satoh  Y Hara  Y Ikawa  T Fujii 《FEBS letters》1992,309(3):272-274
Immunological homology was investigated between Heterosigma akashiwo (a marine algae) Na(+)-activated ATPase and animal Na+,K(+)-ATPase. The former polypeptide [(1989) Plant Cell Physiol. 30, 923-928] reacted with anti-serum raised against the amino-terminal half of the pig kidney Na+,K(+)-ATPase alpha subunit. It is suggested that the Na+,K(+)-ATPase epitope within the amino-terminal region is conserved in the plant Na(+)-activated ATPase, and the region containing the epitope may be important for Na ion transport.  相似文献   

10.
We investigated quantitatively the ultrastructural localization of the alpha-subunit of Na+,K(+)-ATPase in rat retinal pigment epithelial cells by the protein A-gold technique, using an affinity-purified antibody against the alpha-subunit of rat kidney Na+,K(+)-ATPase. Immunoblot analysis showed that the antibody bound specifically to the alpha- and alpha(+)-subunits of Na+,K(+)-ATPase in the whole retina [the sensory retina plus retinal pigment epithelium (RPE)]. Rat eyes were fixed by perfusion with 4% paraformaldehyde containing 1% glutaraldehyde and embedded in Lowicryl K4M. Ultra-thin sections were incubated with affinity-purified antibody against the alpha-subunit of rat kidney Na+,K(+)-ATPase and subsequently with protein A-gold complex. Light microscopy with a silver enhancement procedure revealed Na+,K(+)-ATPase localized to both the apical and the basal plasma membrane domains of the RPE. Quantitative immunocytochemical analysis by electron microscopy showed a higher density of gold particles on the apical surface than on the basolateral one. Microvilli are so well developed on the apical surface of the RPE that the apical surface profile is much longer than the basolateral one. This means that Na+,K(+)-ATPase is mainly located on the apical surface of the RPE cells.  相似文献   

11.
The effects of phenytoin, a potent antiepileptic drug, on the active transport of cations within membranes remain controversial. To assess the direct effects of phenytoin on the Na+,K+ pump, we studied the drug's influence on the phosphorylation of partially purified (Na+,K+)-ATPase from mouse brain. (Na+,K+)-ATPase subunits were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phenytoin, in vitro, decreased net phosphorylation of the (Na+,K+)-ATPase catalytic subunit in a dose-dependent manner (approximately 50% at 10(-4) M). When the conversion of E1-P to E2-P, e.g., the two major phosphorylated conformational states of (Na+,K+)-ATPase, was blocked by oligomycin or N-ethylmaleimide, phenytoin had no effect. The results suggest that phenytoin acts on the phosphatasic component of the reaction cycle, decreasing the phosphorylation level of the enzyme.  相似文献   

12.
By regulating transmembrane Na+ and K+ concentrations and membrane potential, the Na+,K(+)-ATPase plays an important role in regulating cardiac, skeletal, and smooth muscle function. A high degree of amino acid sequence and structural identity characterizes the three Mr 100,000 Na+,K(+)-ATPase alpha subunit isoforms expressed in cardiac and skeletal muscle. Strikingly, vascular smooth muscle utilizes alternative RNA processing of the alpha-1 gene to express a structurally distinct Mr approximately 65,000 isoform, alpha 1-T (truncated). Analysis of both its mRNA and protein structure reveals that alpha-1-T represents a major, evolutionarily conserved, truncated Na+,K(+)-ATPase isoform expressed in vascular smooth muscle. This demonstrates an unexpected complexity in the regulation of vascular smooth muscle Na+,K(+)-ATPase gene expression and suggests that a structurally novel, truncated alpha subunit may play a role in vascular smooth muscle active ion transport.  相似文献   

13.
Active preparations of Na+,K(+)-ATPase containing three types of catalytic isoforms were isolated from the bovine brain to study the structure and function of the sodium pump. Na+,K(+)-ATPase from the brain grey matter was found to have a biphasic kinetics with respect to ouabain inhibition and to consist of a set of isozymes with subunit composition of alpha 1 beta 1, alpha 2 beta m and alpha 3 beta m (where m = 1 and/or 2). The alpha 1 beta 1 form clearly dominated. For the first time, glycosylation of the beta 1-subunit of the alpha 1 beta 1-type isozymes isolated from the kidney and brain was shown to be different. Na+,K(+)-ATPase from the brain stem and axolemma consisted mainly of a mixture of alpha 2 beta 1 and alpha 3 beta 1 isozymes having identical ouabain inhibition constants. In epithelial and arterial smooth muscle cells, where the plasma membrane is divided into functionally and biochemically distinct domains, the polarized distribution of Na+,K(+)-ATPase is maintained through interactions with the membrane cytoskeleton proteins ankyrin and spectrin (Nelson and Hammerton, 1989; Lee et al., 1996). We were the first to show the presence of the cytoskeleton protein tubulin (beta 5-isoform) and glyceraldehyde-3-phosphate dehydrogenase in a high-molecular-weight complex with Na+,K(+)-ATPase in brain stem neuron cells containing alpha 2 beta 1 and alpha 3 beta 1 isozymes. Consequently, the influence of not only subunit composition, but also of glycan and cytoskeleton structures and other plasma membrane-associated proteins on the functional properties of Na+,K(+)-ATPase isozymes is evident.  相似文献   

14.
Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase   总被引:12,自引:0,他引:12  
The K0.5 for intracellular sodium of the two forms of (Na+,K+)-ATPase which exist in rat adipocytes (Lytton, J., Lin, J. C., and Guidotti, G. (1985) J. Biol. Chem. 260, 1177-1184) has been determined by incubating the cells in the absence of potassium in buffers of varying sodium concentration; these conditions shut off the Na+ pump and allow sodium to equilibrate into the cell. The activity of Na+,K+)-ATPase was then monitored with 86Rb+/K+ pumping which was initiated by adding isotope and KCl to 5 mM, followed by a 3-min uptake period. Atomic absorption and 22Na+ tracer equilibration were used to determine the actual intracellular [Na+] under the different conditions. The K0.5 values thus obtained were 17 mM for alpha and 52 mM for alpha(+). Insulin treatment of rat adipocytes had no effect on the intracellular [Na+] nor on the Vmax of 86Rb+/K+ pumping, but did produce a shift in the sodium ion K0.5 values to 14 mM for alpha (p less than 0.025 versus control) and 33 mM for alpha(+) (p less than 0.005 versus control). This change in affinity can explain the selective stimulation of alpha(+) by insulin under normal incubation conditions. Measurement of the K0.5 for sodium ion of (Na+,K+)-ATPase in membranes isolated from adipocytes revealed only a single component of activation with a low K0.5 of 3.5 or 12 mM in the presence of 10 or 100 mM KCl, respectively. Insulin treatment of the isolated membranes or of the cells prior to membrane separation had no effect on these values.  相似文献   

15.
A monoclonal antibody (designated as HK4001) was prepared against hog gastric H+,K(+)-ATPase. It dose-dependently inhibited the H+,K(+)-ATPase activity, formation of the K(+)-sensitive phosphoenzyme, and proton uptake into gastric vesicles. The H+,K(+)-ATPase activity was completely inhibited by addition of the antibody at a molar ratio of 1:2 (antibody/catalytic subunit) at pH 7.8. The maximal inhibition decreased with decrease in pH of the medium (7.8 greater than 7.4 greater than 6.2). The Fab fragment obtained by digestion of the antibody with papain was also inhibitory. The antibody did not inhibit the K(+)-dependent p-nitrophenylphosphatase or the labeling of the enzyme with fluorescein isothiocyanate. It inhibited gastric H+,K(+)-ATPase from rabbits and rats, but did not cross-react with related cation-transport ATPases (Na+,K(+)-ATPase or Ca2(+)-ATPase) or H(+)-ATPase in the multivesicular body. From these and related findings, the antibody was suggested to recognize a highly specific site on the cytosolic surface of H+,K(+)-ATPase. The conformation of the epitope was conserved after treatment with Triton X-100, but not sodium dodecyl sulfate. In addition, judging from the stoichiometry of inactivation of H+,K(+)-ATPase by this antibody, the functional unit of H+,K(+)-ATPase was suggested to be a dimer or a tetramer (not a trimer) of the catalytic unit.  相似文献   

16.
The Na+,K(+)-ATPase alpha 3 isoform has recently been demonstrated immunochemically in human brain. Conclusive biochemical evidence, however, is still lacking. In this study, a unique 50-kDa polypeptide, which is known to be specific to the rat alpha 3 isoform, has been found in human brainstem Na+,K(+)-ATPase following formic acid treatment of the purified alpha isoform proteins. Human alpha 3 Na+,K(+)-ATPase is also highly sensitive to ouabain inhibition, with a 50% ouabain inhibition value of 1.0 x 10(-7) M. These results provide clear and direct evidence for the existence of the alpha 3 isoform in human brain.  相似文献   

17.
The catalytic alpha isoforms of the Na+, K(+)-ATPase and stimuli controlling the plasma membrane abundance and intracellular distribution of the enzyme were studied in isolated bovine articular chondrocytes which have previously been shown to express low and high ouabain affinity alpha isoforms (alpha 1 and alpha 3 respectively; alpha 1 > alpha 3). The Na+, K(+)-ATPase density of isolated chondrocyte preparations was quantified by specific 3H-ouabain binding. Long-term elevation of extracellular medium [Na+] resulted in a significant (31%; p < 0.05) upregulation of Na+, K(+)-ATPase density and treatment with various pharmacological inhibitors (Brefeldin A, monensin and cycloheximide) significantly (p < 0.001) blocked the upregulation. The subcellular distribution of the Na+, K(+)-ATPase alpha isoforms was examined by immunofluorescence confocal laser scanning microscopy which revealed predominantly plasma membrane immunostaining of alpha subunits in control chondrocytes. In Brefeldin A treated chondrocytes exposed to high [Na+], Na+, K(+)-ATPase alpha isoforms accumulated in juxta-nuclear pools and plasma membrane Na+, K(+)-ATPase density monitored by 3H-ouabain binding was significantly down-regulated due to Brefeldin A mediated disruption of vesicular transport. There was a marked increase in intracellular alpha 1 and alpha 3 staining suggesting that these isoforms are preferentially upregulated following long-term exposure to high extracellular [Na+]. The results demonstrate that Na+, K(+)-ATPase density in chondrocytes is elevated in response to increased extracellular [Na+] through de novo protein synthesis of new pumps containing alpha 1 and alpha 3 isoforms, delivery via the endoplasmic reticulum-Golgi complex constitutive secretory pathway and insertion into the plasma membrane.  相似文献   

18.
W J Ball 《Biochemistry》1984,23(10):2275-2281
Several hybridoma cell lines secreting antibodies specific to the membrane (Na+,K+)-dependent ATPase from lamb kidney medulla have been isolated by using the methods developed by Kohler and Milstein. One of these antibodies (designated M7-PB- E9 ) has been shown to be directed against a functional epitope or antigenic site of the catalytic (alpha) subunit of the enzyme. Although this antibody was raised to the "native" holoenzyme, it has a higher apparent affinity toward the isolated, delipidated, and inactive alpha subunit than toward the holoenzyme. This antibody shows a 10-fold faster initial rate of binding to the alpha subunit than to the holoenzyme. The antibody dissociation rates from both isolated alpha subunit and holoenzyme are similarly slow, and the binding can be considered a pseudoirreversible reaction. By binding at this site, the antibody, however, acts like a "partial competitive inhibitor" with respect to ATP and acts as an uncompetitive or mixed competitive inhibitor with respect to the Na+ and K+ dependence of ATPase hydrolysis. This antibody also does not alter the cooperativity at either the Na+ or the K+ sites. The antibody causes a partial inhibition of the Na+- and MgATP-dependent phosphoenzyme intermediate formation but has no effect on either ADP in equilibrium ATP exchange or the K+-stimulated dephosphorylation step. In addition, the K+-dependent p-nitrophenylphosphatase activity of the enzyme was not affected. In the presence of Mg2+, the antibody stimulates the rate of cardiac glycoside binding [( 3H]ouabain) to the (Na+,K+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
B Vilsen 《FEBS letters》1992,314(3):301-307
Site-specific mutagenesis was used to analyse the functional roles of the residues Pro328 and Leu332 located in the conserved PEGLL motif of the predicted transmembrane helix M4 in the alpha 1-subunit of the ouabain resistant rat kidney Na+,K(+)-ATPase. cDNAs encoding either of the Na+,K(+)-ATPase mutants Pro328-->Ala and Leu332-->Ala, and wild type, were cloned into the expression vector pMT2 and transfected into COS-1 cells. Ouabain-resistant clones growing in the presence of 10 microM ouabain were isolated, and the Na+,K+, ATP and pH dependencies of the Na+,K(+)-ATPase activity measured in the presence of 10 microM ouabain were analysed. Under these conditions the exogenous expressed Na+,K(+)-ATPase contributed more than 95% of the Na+,K(+)-ATPase activity. The Pro328-->Ala mutant displayed a reduced apparent affinity for Na+ (K0.5 (Na+) 13.04 mM), relative to the wild type (K0.5 (Na+) 7.13 mM). By contrast, the apparent affinity for Na+ displayed by the Leu332-->Ala mutant was increased (K0.5 (Na+) 3.92 mM). Either of the mutants exhibited lower apparent affinity for K+ relative to the wild type (K0.5 (K+) 2.46 mM for Pro328-->Ala and 1.97 mM for Leu332-->Ala, compared with 0.78 mM for wild type). Both mutants exhibited higher apparent affinity for ATP than the wild type (K0.5 (ATP) 0.086 mM for Pro328-->Ala and 0.042 mM for Leu332-->Ala, compared with 0.287 mM for wild type). The influence of pH was in accordance with an acceleration of the E2 (K)-->E1 transition in the mutants relative to the wild type. These data are consistent with a role of Pro328 and Leu332 in the stabilization of the E2 form and of Pro328 in Na+ binding. The possible role of the mutated residues in K+ binding is discussed.  相似文献   

20.
The NH2-terminal amino acid sequence of the 100 kilodalton subunit of porcine gastric H+,K+-ATPase has been determined to be YKAENYELYQVELGPGP. Although the NH2-terminal region of this protein is not similar to the same region of the lamb kidney Na+,K+-ATPase catalytic subunit, other regions of these ATPase proteins appear to be homologous. Both monoclonal and polyclonal antibodies raised to lamb kidney Na+,K+-ATPase and its alpha, but not beta, subunit cross-react with the 100 kilodalton protein of H+,K+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号