首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J D O'Neil  B D Sykes 《Biochemistry》1989,28(2):699-707
Backbone amide hydrogen exchange measurements are an important source of information about the internal dynamics of proteins. Before such measurements can be interpreted unambiguously, contributions to hydrogen exchange rates from the chemical and physical environment of the amides must be taken into account. Membrane proteins are often solubilized in detergents, yet there have not been any systematic investigations of the possible effects detergents may have on the amide hydrogen exchange rates of proteins. To address this question, we have measured individual backbone and carboxyl-terminal amide exchange rates for the amphipathic tripeptide Leu-Val-Ile-amide dissolved in water and dodecyl sulfate micelles. 1H NMR spectroscopy was used to measure exchange using the direct exchange-out into D2O technique at 5 degrees C and using an indirect steady-state saturation-transfer technique at 25 degrees C. The broadening effect of micelle-incorporated spin-labeled fatty acid (12-doxylstearate) on the 1H NMR spectra of both the detergent and the peptide resonances was used to demonstrate that the tripeptide is intimately associated with the micelle. The resonance from formate ion, which is excluded from the micelle, was unperturbed by the spin label. The detergent did not retard the exchange rates of either the primary (terminal) or secondary (backbone) amides of the tripeptide. This suggests that the micelle/peptide interaction does not restrict access of charged catalysts and water to these amides and shows that the peptide amides are not hydrogen bonded. However, the pH for the exchange minima of these amides in detergent was increased between 1.2 and 1.7 units compared to exchange in water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

3.
We describe methods for minimization of and correction for artifactual forward and backward exchange occurring during hydrogen exchange-mass spectrometric (HX-MS) studies of amyloid fibrils of the Abeta(1-40) peptide. The quality of the corrected data obtained using published and new correction algorithms is evaluated quantitatively. Using the new correction methods, we have determined that 20.1 +/- 1.4 of the 39 backbone amide hydrogens in Abeta(1-40) exchange with deuteriums in 100 h when amyloid fibrils of this peptide are suspended in D(2)O. These data reinforce our previous conclusions based on uncorrected data that amyloid fibrils contain a rigid protective core structure that involves only about half of the Abeta backbone amides. The methods developed here should be of general value for HX-MS studies of amyloid fibrils and other protein aggregates.  相似文献   

4.
J D O'Neil  B D Sykes 《Biochemistry》1988,27(8):2753-2762
The coat protein of bacteriophage M13 is inserted into the inner membrane of Escherichia coli where it exists as an integral membrane protein during the reproductive cycle of the phage. The protein sequence consists of a highly hydrophobic 19-residue central segment flanked by an acidic 20-residue N-terminus and a basic 11-residue C-terminus. We have measured backbone amide hydrogen exchange of the protein solubilized in perdeuteriated sodium dodecyl sulfate using 1H nuclear magnetic resonance (NMR) spectroscopy. Direct proton exchange-out measurements in D2O at 24 degrees C were used to follow the exchange of the slowest amides in the protein. Multiple exponential fitting of the exchange data showed that these amides (29 +/- 3 at pH 4.5) exchanged in two kinetic sets with exchange rates [(1.2 +/- 0.4) x 10(-4) s-1 and (4.1 +/- 1.2) x 10(-7) s-1] that differed by more than 100-fold, the slower kinetic set being retarded 10(5)-fold relative to poly(DL-alanine). The exchange rate constant for the slowest set of amides exhibited an unusual pD dependence, being proportional to [OD-]1/2. It is shown that this is an artifact of the multiple exponential fitting of the data, and a new method of presentation of exchange data as a function of pD is introduced. Steady-state saturation-transfer techniques were also used to measure exchange. These methods showed that 15-20 amides in the protein are very stable at 55 degrees C and that about 30 amides have exchange rates retarded by at least 10(5)-fold at 24 degrees C. Saturation-transfer studies also showed that the pH dependence of exchange in the hydrophilic termini was unusual. This is explained as being due to long-range electrostatic effects arising both from the protein itself and also from the anionic detergent molecules. Hydrogen exchange studies on the products of proteinase K digestion of the protein localized the slowly exchanging amides to the hydrophobic core of the protein. Relaxation [Henry, G.D., Weiner, J.H., & Sykes, B.D. (1986) Biochemistry 25, 590-598] and solid-state NMR experiments [Leo, G.C., Colnago, L.A., Valentine, K.G., & Opella, S.J. (1987) Biochemistry 26, 854-862] have previously shown that the majority of the protein backbone is rigid on the picosecond to microsecond time scale, except for the extreme ends of the molecule which are mobile.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Amide-resolved hydrogen-deuterium exchange-rate constants were measured for backbone amides of alamethicin reconstituted in dioleoylphosphatidylcholine vesicles by an exchange-trapping method combined with high-resolution nuclear magnetic resonance spectroscopy. In vesicles containing alamethicin at molar ratios between 1:20 and 1:100 relative to lipid, the exchange-rate constants increased with increasing volume of the D20 buffer in which the vesicles were suspended, indicating that exchange under these conditions is dominated by partitioning of the peptide into the aqueous phase. This was supported by observation of a linear relationship between the exchange-rate constants for amides in membrane-reconstituted alamethicin and those for amides in alamethicin dissolved directly into D2O buffer. Significant protection of amides from exchange with D2O buffer in membrane-reconstituted alamethicin is interpreted in terms of stabilization by helical hydrogen bonding. Under conditions in which amide exchange occurred by partitioning of the peptide into solution, only lower limits for hydrogen-bond stabilities in the membrane were determined; all the potentially hydrogen-bonded amides of alamethicin are at least 1000-fold exchange protected in the membrane-bound state. When partitioning of alamethicin into the aqueous phase was suppressed by hydration of reconstituted vesicles in a limiting volume of water [D2O:dioleoylphosphatidylcholine:alamethicin; 220:1:0.05; (M:M:M)], the exchange-protection factors exhibited helical periodicity with highly exchange-protected, and less well-protected, amides on the nonpolar and polar helix faces, respectively. The exchange data indicate that, under the conditions studied, alamethicin adopts a stable helical structure in DOPC bilayers in which all the potentially hydrogen-bonded amides are stabilized by helical hydrogen bonds. The protection factors define the orientation of the peptide helix with respect to an aqueous phase, which is either the bulk solution or water within parallel or antiparallel transmembrane arrays of reconstituted alamethicin.  相似文献   

6.
A Yee  B Szymczyna  J D O'Neil 《Biochemistry》1999,38(20):6489-6498
Alamethicin is a 20 amino acid antibiotic peptide produced by the soil fungus Trichoderma viride. The peptide inserts into bacterial membranes and self-associates to form ion channels, but the details of this process are unknown. Residue-specific acid- and base-catalyzed exchange data were obtained for 16 of 18 backbone amides of alamethicin dissolved in sodium dodecyl sulfate micelles using high-resolution 2-dimensional heteronuclear nuclear magnetic resonance spectroscopy. To facilitate interpretation of the exchange data, we synthesized N-acetyl-alpha-aminoisobutyric acid-N'-methyl and N-acetyl-alanine-N'-methyl and measured the pD dependence of their hydrogen-deuterium exchange rates to determine the sequence-dependent inductive and steric effects of the alpha-aminoisobutyric acid residue. Intramolecular H-bonding in alamethicin was monitored through the exchange parameters kmin (minimum exchange rate) which indicate that the backbone is significantly more stable than the backbones of alanine-based helical peptides. Rapid exchange at Gly-11 suggests a highly local conformational flexibility in the middle of the peptide. Interactions with the detergent micelle were revealed by the exchange parameters pDmin (pD of minimum exchange) which suggest that the N-terminus of alamethicin interacts more strongly with the detergent micelle than does the C-terminus. A periodicity in pDmin difference data reveals that one surface of the helix interacts more strongly with the micelle. The surface consists of residues 1, 5, 9, 13, 16, and 20. The opposite face of the helix contains several polar residues (two glutamines and a glycine), suggesting that, on average, this face of the helix is directed toward the solvent. These results serve as a model for the interaction of the peptide with membranes containing anionic lipid. In combination with published molecular dynamics simulations [Gibbs et al. (1997) Biophys. J. 72, 2490-2495], the present results also offer insight into the mechanisms of hydrogen-deuterium exchange in helical peptides.  相似文献   

7.
Conantokin-G (con-G) and conantokin-T (con-T) are naturally occurring gamma-carboxyglutamate (Gla)-containing peptides that interact with multivalent cations in functionally relevant manners. Selective 13C-enrichment of Cgamma and Cdelta in each of the Gla residues has allowed metal binding affinities to be measured at individual side chains. Con-T possesses two metal binding sites, one with high affinity at Gla10/Gla14 and another with weak binding at Gla3/Gla4. Con-G contains two sites of comparable low affinity for Ca2+. Analysis of the 13C line-widths of con-G in the presence of Mg2+ allowed the order of metal binding to be determined, with Gla10/Gla14 loading before the Gla3/Gla4/Gla7 cluster. While the variant peptide, apo-con-T[Lys7Gla], was shown to have a very low alpha-helical content, this peptide binds a second metal with much greater affinity than wild-type con-T. This provides additional evidence that Gla7 in con-G is primarily responsible for destabilizing the apo-form, but is an important ligand for metal chelation. The residue-specific alpha-helical stabilities of con-G and con-T in their metal-free and metal-loaded states were estimated by determining rates of proton exchange from backbone peptide bond amides with deuterium atoms from 2H20-containing solvents. For both peptides, the lifetimes of protons on several peptide bond amides increased as metals of higher affinity were bound to the peptides, with the longest half-lives found in the region of the alpha-helical turn stabilized by the Gla10/Gla14 metal coordination site. We propose that Gla10 and Gla14 constitute the primary tight metal ion binding site in both peptides. This detailed analysis with physiologically relevant metal cations is crucial for deciphering the roles of critical amino acids in the bioactivity of the conantokin peptides.  相似文献   

8.
We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15N–T 1 timescales). We observed chemical exchange for 6 residues with HDX exchange rates in the range from 0.2 to 5 s−1. Backbone amide 15N longitudinal relaxation times that we determined previously are not significantly affected for most residues, yielding no systematic artifacts upon quantification of backbone dynamics (Chevelkov et al. 2008b). Significant exchange was observed for the backbone amides of R21, S36 and K60, as well as for the sidechain amides of N38, N35 and for W41ε. These residues could not be fit in our previous motional analysis, demonstrating that amide proton chemical exchange needs to be considered in the analysis of protein dynamics in the solid-state, in case D2O is employed as a solvent for sample preparation. Due to the intrinsically long 15N relaxation times in the solid-state, the approach proposed here can expand the range of accessible HDX rates in the intermediate regime that is not accessible so far with exchange quench and MEXICO type experiments.  相似文献   

9.
The exchange rates of the static solvent-accessible amide hydrogens of Pyrococcus furiosus rubredoxin range from near the diffusion-limited rate to a billion-fold slower for the non-hydrogen-bonded Val 38 (eubacterial numbering). Hydrogen exchange directly monitors the kinetic acidity of the peptide nitrogen. Electrostatic solvation free energies were calculated by Poisson-Boltzmann methods for the individual peptide anions that form during the hydroxide-catalyzed exchange reaction to examine how well the predicted thermodynamic acidities match the experimentally determined kinetic acidities. With the exception of the Ile 12 amide, the differential exchange rate constant for each solvent-exposed amide proton that is not hydrogen bonded to a backbone carbonyl can be predicted within a factor of 6 (10 (0.78)) root-mean-square deviation (rmsd) using the CHARMM22 electrostatic parameter set and an internal dielectric value of 3. Under equivalent conditions, the PARSE parameter set yields a larger rmsd value of 1.28 pH units, while the AMBER parm99 parameter set resulted in a considerably poorer correlation. Either increasing the internal dielectric value to 4 or reducing it to a value of 2 significantly degrades the quality of the prediction. Assigning the excess charge of the peptide anion equally between the peptide nitrogen and the carbonyl oxygen also reduces the correlation to the experimental data. These continuum electrostatic calculations were further analyzed to characterize the specific structural elements that appear to be responsible for the wide range of peptide acidities observed for these solvent-exposed amides. The striking heterogeneity in the potential at sites along the protein-solvent interface should prove germane to the ongoing challenge of quantifying the contribution that electrostatic interactions make to the catalytic acceleration achieved by enzymes.  相似文献   

10.
Uchida K  Markley JL  Kainosho M 《Biochemistry》2005,44(35):11811-11820
A novel method for monitoring proton-deuteron (H/D) exchange at backbone amides is based on the observation of H/D isotope effects on the (13)C NMR signals from peptide carbonyls. The line shape of the carbonyl (13)C(i) signal is influenced by differential H/D occupancy at the two adjacent amides: the H(N)(i)(+1) (beta site) and the H(N)(i) (gamma site). At a carbon frequency of 75.4 MHz, the H --> D isotope shifts on the (13)C signal are about 5-7 Hz for exchange at the beta site and 2 Hz or less for exchange at the gamma site. Because the effects at the two sites are additive, the time dependence of the line shape of a particular carbonyl resonance can report not only the exchange rates at the individual sites but also the level of dual exchange. Therefore, the data can be analyzed to determine the rate (k(c)) and degree of correlated exchange (X(betagamma)) at the two sites. We have applied this approach to the investigation of the pH dependence of hydrogen exchange at several adjacent residues in Streptomyces subtilisin inhibitor (SSI). Two selectively labeled SSI proteins were produced: one with selective (13)C' labeling at all valyl residues and one with selective (13)C' labeling at all leucyl residues. This permitted the direct observation by one-dimensional (13)C NMR of selected carbonyl signals from residues with slowly exchanging amides at the i and i + 1 positions. The residues investigated were located in an alpha helix and in a five-stranded antiparallel beta sheet. Samples of the two labeled proteins were prepared at various pH values, and (13)C NMR spectra were collected at 50 degrees C prior to and at various times after transferring the sample from H(2)O to (2)H(2)O. Most of the slowly exchanging amides studied were intramolecular hydrogen-bond donors. In agreement with prior studies, the results indicated that the exchange rates of the amide hydrogens in proteins are governed not only by hydrogen bonding but also by other factors. For example, the amide hydrogen of Thr34 exchanges rapidly even though it is an intramolecular hydrogen-bond donor. Over nearly the whole pH range studied, the apparent rates of uncorrelated exchange (k(beta) and k(gamma)) were proportional to [OH(-)] and the apparent rates of correlated exchange at two adjacent sites (k(c)) were roughly proportional to [OH(-)](2). This enabled us to extract the pH-independent exchange rates (k(beta) degrees , k(gamma) degrees , and k(c) degrees ). In all cases in which correlated exchange could be measured, the observed sigmoidal pH dependence of X(betagamma) could be replicated roughly from the derived pH-independent rates.  相似文献   

11.
A key step in visual transduction is the light-induced conformational changes of rhodopsin that lead to binding and activation of the G-protein transducin. In order to explore the nature of these conformational changes, time-resolved Fourier transform infrared spectroscopy was used to measure the kinetics of hydrogen/deuterium exchange in rhodopsin upon photoexcitation. The extent of hydrogen/deuterium exchange of backbone peptide groups can be monitored by measuring the integrated intensity of the amide II and amide II' bands. When rhodopsin films are exposed to D2O in the dark for long periods, the amide II band retains at least 60% of its integrated intensity, reflecting a core of backbone peptide groups that are resistant to H/D exchange. Upon photoactivation, rhodopsin in the presence of D2O exhibits a new phase of H/D exchange which at 10 degrees C consists of fast (time constant approximately 30 min) and slow (approximately 11 h) components. These results indicate that photoactivation causes buried portions of the rhodopsin backbone structure to become more accessible.  相似文献   

12.
13.
14.
The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices.  相似文献   

15.
The rate of exchange of the labile hydrogens of lysozyme was measured by out-exchange of tritium from the protein in solution and from powder samples of varied hydration level, for pH 2, 3, 5, 7, and 10 at 25 degrees C. The dependence of exchange of powder samples on the level of hydration was the same for all pHs. Exchange increased strongly with increased hydration until reaching a rate of exchange that is constant above 0.15 g of H2O/g of protein (120 mol of H2O/mol of protein). This hydration level corresponds to coverage of less than half the protein surface with a monolayer of water. No additional hydrogen exchange was observed for protein powders with higher water content. Considered in conjunction with other lysozyme hydration data [Rupley, J. A., Gratton, E., & Careri, G. (1983) Trends Biochem. Sci. (Pers. Ed.) 8, 18-22], this observation indicates that internal protein dynamics are not strongly coupled to surface properties. The use of powder samples offers control of water activity through regulation of water vapor pressure. The dependence of the exchange rate on water activity was about fourth order. The order was pH independent and was constant from 114 to 8 mol of hydrogen remaining unexchanged/mol of lysozyme. These results indicate that the rate-determining step for protein hydrogen exchange is similar for all backbone amides and involves few water molecules. Powder samples were hydrated either by isopiestic equilibration, with a half-time for hydration of about 1 h, or by addition of solvent to rapidly reach final hydration. Samples hydrated slowly by isopiestic equilibration exhibited more exchange than was observed for samples of the same water content that had been hydrated rapidly by solvent addition. This difference can be explained by salt and pH effects on the nearly dry protein. Such effects would be expected to contribute more strongly during the isopiestic equilibration process. Solution hydrogen exchange measurements made for comparison with the powder measurements are in good agreement with published data. Rank order was proven the same for all pHs by solution pH jump experiments. The effect of ionic strength on hydrogen exchange was examined at pH 2 and pH 5 for protein solutions containing up to 1.0 M added salt. The influence of ionic strength was similar for both pHs and was complex in that the rate increased, but not monotonically, with increased ionic strength.  相似文献   

16.
A Fourier deconvolution method has been developed to explicitly determine the amount of backbone amide deuterium incorporated into protein regions or segments by hydrogen/deuterium (H/D) exchange with high-resolution mass spectrometry. Determination and analysis of the level and number of backbone amide exchanging in solution provide more information about the solvent accessibility of the protein than do previous centroid methods, which only calculate the average deuterons exchanged. After exchange, a protein is digested into peptides as a way of determining the exchange within a local area of the protein. The mass of a peptide upon deuteration is a sum of the natural isotope abundance, fast exchanging side-chain hydrogens (present in MALDI-TOF H/2H data) and backbone amide exchange. Removal of the components of the isotopic distribution due to the natural isotope abundances and the fast exchanging side-chains allows for a precise quantification of the levels of backbone amide exchange, as is shown by an example from protein kinase A. The deconvoluted results are affected by overlapping peptides or inconsistent mass envelopes, and evaluation procedures for these cases are discussed. Finally, a method for determining the back exchange corrected populations is presented, and its effect on the data is discussed under various circumstances.  相似文献   

17.
Lim ST 《Plant physiology》1978,62(4):609-611
A sensitive tritium exchange assay was applied to the Rhizobium system for measuring the expression of uptake hydrogenase in free-living cultures of Rhizobium japonicum. Hydrogenase was detected about 45 hours after inoculation of cultures maintained under microaerophilic conditions (about 0.1% O2). The tritium exchange assay was used to screen a variety of different strains of R. japonicum (including major production strains) with the findings that about 30% of the strains expressed hydrogenase activity with identical results being observed using an alternative assay based on uptake of H2. The relative efficiency of intact soybean nodules inoculated with 10 different rhizobial strains gave results identical to those obtained using free-living cultures. The tritium exchange assay provides an easy, quick, and accurate assessment of H2 uptake efficiency of intact nodules.  相似文献   

18.
pH dependence of hydrogen exchange from backbone peptide amides in apamin   总被引:1,自引:0,他引:1  
C E Dempsey 《Biochemistry》1986,25(13):3904-3911
The kinetics of hydrogen exchange of the 11 most protected backbone amides of bee venom apamin have been measured between pH 1 and pH 8.5 by using time-resolved and saturation-transfer NMR spectroscopy. The five amides most protected from base-catalyzed exchange, those of residues 5 and 12-15, show highly correlated exchange behavior in the base-catalyzed regime. It is proposed that the intramolecular hydrogen bonds stabilizing these amides define a stable cooperative unit of secondary structure in apamin (a C-terminal helix and an N-terminal beta-turn). This conformational unit is further stabilized (by 5-6 kJ mol-1) on titration of the Glu-7 side-chain carboxyl group. The relative contributions of specific intramolecular interactions to this conformational stabilization are estimated. The pHminima in the pH-dependent single amide exchange curves are compared with values predicted by correcting for sequence-dependent contributions to amide exchange rates [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158]. The lack of correlation suggests that the "open" conformers from which amide exchange occurs are nonrandom. This conclusion is dependent on the assumption that acid-catalyzed exchange occurs via N-protonation so that residual conformational effects on exchange rates in the open conformers will affect acid- and base-catalyzed rates in approximately equal and opposite ways. A strong correlation between the measured pHminima and the amide proton chemical shifts is observed, however, and this may be most easily accommodated if acid-catalyzed exchange occurs by the imidic acid mechanism (via amide O-protonation).  相似文献   

19.
Carbon-13 spin-lattice relaxation times (T1) have been determined for the carbon in the octapeptide hormone [5-isoleucine]-angiotensin II in aqueous solution. Two possible models for molecular motion are considered: isotropic overall motion of the hormone with internal motion of some residues and anisotropic overall molecular motion. The data are interpreted in detail using the former model. The alpha carbons of the peptide backbone are all equally restricted in their motion. The correlation time for overall molecular reorientation, calculated from an everage T1 value of 95 msec for the alpha carbons in the peptide backbone, is ca. 5 times 10-10 sec. The carbons in the side chains are more mobile than those in the peptide backbone, with the exception of the side chain of the Tyr residue which does not undergo rapid segmental motion. We propose that [5-isoleucine]-angiotensin II has a restricted backbone conformation and that the alpha carbons of the N- and C-terminal residues are constrained to nearly the same extent as the remaining alpha carbons in the peptide backbone. Chemical shift data indicate that the Pro residue adopts the trans conformation about the His-Pro bond and that the imidazole ring of His has a strong preference for the N-tau -H tautomer.  相似文献   

20.
Analysis of two isomeric cyclic hexapeptides of composition (Asp, Arg, Gly2, Pro, D -Pro) by a nuclear Overhauser effect constrained distance geometry conformation search yielded a narrowly defined backbone conformation for one and considerable ambiguity about the conformation in part of the other. Preliminary 13C relaxation studies of these peptides suggest that it is possible that this difference may correspond to a physical difference in internal mobility. In connection with this observation, other experimental evidence bearing on the backbone conformational mobility of cyclic oligopeptides with 4–10 residues, frequently considered to have well-defined backbones, is reviewed. Conformational heterogeneity involving rotation of a peptide bond plane relative to the overall ring plane is identified as a common phenomenon. Nuclear magnetic resonance line-shape studies at temperatures down to 200 K can detect backbone motions with activation free energy barriers down to about 10 kcal/mole, but conformational exchange with lower barriers, though detectable in other ways, will not be obvious from nmr spectra alone. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号