首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J F Hancock  H Paterson  C J Marshall 《Cell》1990,63(1):133-139
The C-terminal CAAX motif of ras proteins undergoes a triplet of posttranslational modifications that are required for membrane association. The CAAX motif lies immediately C-terminal to the hypervariable domain, a region of 20 amino acids that distinguishes the ras proteins from each other. The hypervariable domains of p21H-ras, p21N-ras, and p21K-ras(A) contain sites for palmitoylation, which we now show must combine with the CAAX motif to target specific plasma membrane localization. Within the hypervariable domain of p21K-ras(B), which is not palmitoylated, we have identified a novel plasma membrane targeting signal consisting of a polybasic domain that also acts in combination with the CAAX motif. One function of the hypervariable domains of p21ras is therefore to provide different signals for plasma membrane localization.  相似文献   

2.
Plasma membrane targeting of G protein alpha (Galpha) subunits is essential for competent receptor-to-G protein signaling. Many Galpha are tethered to the plasma membrane by covalent lipid modifications at their N terminus. Additionally, it is hypothesized that Gq family members (Gqalpha,G11alpha,G14alpha, and G16alpha) in particular utilize a polybasic sequence of amino acids in their N terminus to promote membrane attachment and protein palmitoylation. However, this hypothesis has not been tested, and nothing is known about other mechanisms that control subcellular localization and signaling properties of G14alpha and G16alpha. Here we report critical biochemical factors that mediate membrane attachment and signaling function of G14alpha and G16alpha. We find that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences in their N termini and that the polycysteine sequence along with the adjacent polybasic region are both important for G16alpha-mediated signaling at the plasma membrane. Surprisingly, the isolated N termini of G14alpha and G16alpha expressed as peptides fused to enhanced green fluorescent protein each exhibit differential requirements for palmitoylation and membrane targeting; individual cysteine residues, but not the polybasic regions, determine lipid modification and subcellular localization. However, full-length G16alpha, more so than G14alpha, displays a functional dependence on single cysteines for membrane localization and activity, and its full signaling potential depends on the integrity of the polybasic sequence. Together, these findings indicate that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences, and that the adjacent polybasic domain is not required for Galpha palmitoylation but is important for localization and functional activity of heterotrimeric G proteins.  相似文献   

3.
We have identified a gene, SHR5, in a screen for extragenic suppressors of the hyperactive RAS2Val-19 mutation in the budding yeast Saccharomyces cerevisiae. SHR5 was cloned, sequenced, and found to encode a 23-kDa protein not significantly homologous to other proteins in the current data bases. Genetic evidence arguing that Shr5 operates at the level of Ras is presented. We tested whether SHR5, like previously isolated suppressors of hyperactivated RAS2, acts by affecting the membrane attachment and/or posttranslational modification of Ras proteins. We found that less Ras protein is attached to the membrane in shr5 mutants than in wild-type cells and that the Ras proteins are markedly underpalmitoylated, suggesting that Shr5 is involved in palmitoylation of Ras proteins. However, shr5null mutants exhibit normal palmitoyltransferase activity measured in vitro. Further, shr5null mutations attenuate Ras function in cells containing mutant Ras2 proteins that are not palmitoylated or farnesylated. We conclude that SHR5 encodes a protein that participates in the membrane localization of Ras but also interacts in vivo with completely unprocessed and cytosolic Ras proteins.  相似文献   

4.
Calcium-dependent protein kinases (CDPK) are a major group of calcium-stimulated kinases found in plants and some protists. Many CDPKs are membrane-associated, presumably because of lipid modifications at their amino termini. We investigated the subcellular location and myristoylation of AtCPK5, a member of the Arabidopsis CDPK family. Most AtCPK5 was associated with the plasma membrane as demonstrated by two-phase fractionation of plant microsomes and by in vivo detection of AtCPK5-GFP fusion proteins. AtCPK5 was a substrate for plant N-myristoyltransferase and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In transgenic plants, a G2A mutation completely abolished AtCPK5 membrane association, indicating that myristoylation was essential for membrane binding. The first sixteen amino acids of AtCPK5 were sufficient to direct plasma membrane localization. In addition, differentially phosphorylated forms of AtCPK5 were detected both in planta and after expression of AtCPK5 in a cell-free plant extract. Our results demonstrate that AtCPK5 is myristoylated at its amino terminus and that myristoylation is required for membrane binding.  相似文献   

5.
The noncapsid assembly proteins pI and pI of the filamentous bacteriophage f1 are inserted into the inner membrane of Escherichia coli via an internal signal sequence. Inhibition of the activity of SecA with low concentrations of sodium azide results in rapid accumulation of pI and pI proteins in the cytoplasm. However, both proteins are inserted into the membrane under the same conditions when synthesized in bacteria containing a secA azide resistance mutation. The other noncapsid assembly protein, pIV, is an outer membrane protein synthesized with a cleavable signal sequence. Wild-type bacteria accumulate the precursor to pIV when protein synthesis is in the presence of low concentrations of sodium azide. These results suggest that the f1 bacteriophage assembly proteins require SecA and consequently the bacterial Sec system to reach their proper membrane location.  相似文献   

6.
7.
Mutation of Galpha(q) or Galpha(s) N-terminal contact sites for Gbetagamma resulted in alpha subunits that failed to localize at the plasma membrane or undergo palmitoylation when expressed in HEK293 cells. We now show that overexpression of specific betagamma subunits can recover plasma membrane localization and palmitoylation of the betagamma-binding-deficient mutants of alpha(s) or alpha(q). Thus, the betagamma-binding-defective alpha is completely dependent on co-expression of exogenous betagamma for proper membrane localization. In this report, we examined the ability of beta(1-5) in combination with gamma(2) or gamma(3) to promote proper localization and palmitoylation of mutant alpha(s) or alpha(q). Immunofluorescence localization, cellular fractionation, and palmitate labeling revealed distinct subtype-specific differences in betagamma interactions with alpha subunits. These studies demonstrate that 1) alpha and betagamma reciprocally promote the plasma membrane targeting of the other subunit; 2) beta(5), when co-expressed with gamma(2) or gamma(3), fails to localize to the plasma membrane or promote plasma membrane localization of mutant alpha(s) or alpha(q); 3) beta(3) is deficient in promoting plasma membrane localization of mutant alpha(s) and alpha(q), whereas beta(4) is deficient in promoting plasma membrane localization of mutant alpha(q); 4) both palmitoylation and interactions with betagamma are required for plasma membrane localization of alpha.  相似文献   

8.
Plant ROPs (or RACs) are soluble Ras-related small GTPases that are attached to cell membranes by virtue of the post-translational lipid modifications of prenylation and S-acylation. ROPs (RACs) are subdivided into two major subgroups called type-I and type-II. Whereas type-I ROPs terminate with a conserved CaaL box and undergo prenylation, type-II ROPs undergo S-acylation on two or three C-terminal cysteines. In the present work we determined the sequence requirement for association of Arabidopsis type-II ROPs with the plasma membrane. We identified a conserved sequence motif, designated the GC-CG box, in which the modified cysteines are flanked by glycines. The GC-CG box cysteines are separated by five to six mostly non-polar residues. Deletion of this sequence or the introduction of mutations that change its nature disrupted the association of ROPs with the membrane. Mutations that changed the GC-CG box glycines to alanines also interfered with membrane association. Deletion of a polybasic domain proximal to the GC-CG box disrupted the plasma membrane association of AtROP10. A green fluorescent protein fusion protein containing the C-terminal 25 residues of AtROP10, including its polybasic domain and GC-CG box, was primarily associated with the plasma membrane but a similar fusion protein lacking the polybasic domain was exclusively localized in the soluble fraction. These data provide evidence for the minimal sequence required for plasma membrane association of type-II ROPs in Arabidopsis and other plant species.  相似文献   

9.
Heterotrimeric G proteins typically localize at the cytoplasmic face of the plasma membrane where they interact with heptahelical receptors. For G protein alpha subunits, multiple membrane targeting signals, including myristoylation, palmitoylation, and interaction with betagamma subunits, facilitate membrane localization. Here we show that an additional membrane targeting signal, an N-terminal polybasic region, plays a key role in plasma membrane localization of non-myristoylated alpha subunits. Mutations of N-terminal basic residues in alpha(s) and alpha(q) caused defects in plasma membrane localization, as assessed through immunofluorescence microscopy and biochemical fractionations. In alpha(s), mutation of four basic residues to glutamine was sufficient to cause a defect, whereas in alpha(q) a defect in membrane localization was not observed unless nine basic residues were mutated to glutamine or if three basic residues were mutated to glutamic acid. betagamma co-expression only partially rescued the membrane localization defects; thus, the polybasic region is also important in the context of the heterotrimer. Introduction of a site for myristoylation into the polybasic mutants of alpha(s) and alpha(q) recovered strong plasma membrane localization, indicating that myristoylation and polybasic motifs may have complementary roles as membrane targeting signals. Loss of plasma membrane localization coincided with defects in palmitoylation. The polybasic mutants of alpha(s) and alpha(q) were still capable of assuming activated conformations and stimulating second messenger production, as demonstrated through GST-RGS4 interaction assays, cAMP assays, and inositol phosphate assays. Electrostatic interactions with membrane lipids have been found to be important in plasma membrane targeting of many proteins, and these results provide evidence that basic residues play a role in localization of G protein alpha subunits.  相似文献   

10.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

11.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

12.
Giantin is a resident Golgi protein that has an extremely long cytoplasmic domain (about 370 kDa) and is anchored to the Golgi membrane by the COOH-terminal membrane-anchoring domain (CMD) with no luminal extension. We examined the essential domain of giantin required for Golgi localization by mutational analysis. The Golgi localization of giantin was not affected by the deletion of its CMD or by substitution with the CMD of syntaxin-2, a plasma membrane protein. The giantin CMD fused to the cytoplasmic domain of syntaxin-2 could not retain the chimera in the Golgi apparatus. Sequential deletion analysis showed that the COOH-terminal sequence (positions 3059--3161) adjacent to the CMD was the essential domain required for the Golgi localization of giantin. We also examined two other Golgi-resident proteins, golgin-84 and syntaxin-5, with a similar membrane topology as giantin. It was confirmed that the cytoplasmic domain of about 100 residues adjacent to the CMD was required for their Golgi localization. Taken together, these results suggest that the COOH-terminally anchored Golgi proteins with long cytoplasmic extensions have the Golgi localization signal(s) in the cytoplasmic sequence adjacent to the CMD. This is in contrast to previous observations that a transmembrane domain is required for Golgi localization by other Golgi proteins transported from the endoplasmic reticulum.  相似文献   

13.
The GPI (glycosylphosphatidylinositol) moiety is attached to newly synthesized proteins in the lumen of the ER (endoplasmic reticulum). The modified proteins are then directed to the PM (plasma membrane). Less well understood is how nascent mammalian GPI-anchored proteins are targeted from the ER to the PM. In the present study, we investigated mechanisms underlying membrane trafficking of the GPI-anchored proteins, focusing on the early secretory pathway. We first established a cell line that stably expresses inducible temperature-sensitive GPI-fused proteins as a reporter and examined roles of transport-vesicle constituents called p24 proteins in the traffic of the GPI-anchored proteins. We selectively suppressed one of the p24 proteins, namely p23, employing RNAi (RNA interference) techniques. The suppression resulted in pronounced delays of PM expression of the GPI-fused reporter proteins. Furthermore, maturation of DAF (decay-accelerating factor), one of the GPI-anchored proteins in mammals, was slowed by the suppression of p23, indicating delayed trafficking of DAF from the ER to the Golgi. Trafficking of non-GPI-linked cargo proteins was barely affected by p23 knockdown. This is the first to demonstrate direct evidence for the transport of mammalian GPI-anchored proteins being mediated by p24 proteins.  相似文献   

14.
Roc, a Ras/GTPase domain in complex proteins   总被引:15,自引:0,他引:15  
We identified a novel group of the Ras/GTPase superfamily, termed Roc, that is present as domain in complex proteins together with other domains, including leucine-rich repeats (LRRs), ankyrin repeats, WD40 repeats, kinase domains, RasGEF and RhoGAP domains. Roc is always succeeded by a novel 300-400-amino-acid-long domain, termed COR. Proteins with Roc/COR are present in prokaryotes, Dictyostelium, plants and metazoa.  相似文献   

15.
There is evidence that alterations in the normal physiological activity of PrP(C) contribute to prion-induced neurotoxicity. This mechanism has been difficult to investigate, however, because the normal function of PrP(C) has remained obscure, and there are no assays available to measure it. We recently reported that cells expressing PrP deleted for residues 105-125 exhibit spontaneous ionic currents and hypersensitivity to certain classes of cationic drugs. Here, we utilize cell culture assays based on these two phenomena to test how changes in PrP sequence and/or cellular localization affect the functional activity of the protein. We report that the toxic activity of Δ105-125 PrP requires localization to the plasma membrane and depends on the presence of a polybasic amino acid segment at the N terminus of PrP. Several different deletions spanning the central region as well as three disease-associated point mutations also confer toxic activity on PrP. The sequence domains identified in our study are also critical for PrP(Sc) formation, suggesting that common structural features may govern both the functional activity of PrP(C) and its conversion to PrP(Sc).  相似文献   

16.
Ras proteins regulate cell growth, death, and differentiation, and it is well established that this functional versatility is accomplished through their different subcellular localizations. Palmitoylated H- and N-Ras are believed to localize at the perinuclear Golgi and plasma membrane (PM). Notably, however, recycling endosomes (REs) also localize to a perinuclear region, which is often indistinguishable from the Golgi. In this study, we show that active palmitoylated Ras proteins mainly localize intracellularly at REs and that REs act as a way station along the post-Golgi exocytic pathway to the PM. H-Ras requires two palmitoyl groups for RE targeting. The lack of either or both palmitoyl groups leads to the mislocalization of the mutant proteins to the endoplasmic reticulum, Golgi apparatus, or the PM. Therefore, we demonstrate that palmitoylation directs Ras proteins to the correct intracellular organelles for trafficking and activity.  相似文献   

17.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is expressed constitutively in lipid rafts in latently infected B lymphocytes. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids selective for specific protein association. Lipid rafts have been shown to be necessary for B-cell receptor (BCR) signal transduction. LMP2A prevents BCR recruitment to lipid rafts, thereby abrogating BCR function. As LMP2A is palmitoylated, whether this fatty acid modification is necessary for LMP2A to localize to lipid rafts and for protein function was investigated. LMP2A palmitoylation was confirmed in latently infected B cells. LMP2A was found to be palmitoylated on multiple cysteines only by S acylation. An LMP2A mutant that was not palmitoylated was identified and functioned similar to wild-type LMP2A; unmodified LMP2A localized to lipid rafts, was tyrosine phosphorylated, was associated with LMP2A-associated proteins, was ubiquitinated, and was able to block calcium mobilization following BCR cross-linking. Therefore, palmitoylation of LMP2A is not required for LMP2A targeting to buoyant complexes or for function.  相似文献   

18.
The complex dynamic structure of the plasma membrane plays critical roles in cellular signaling; interactions with the membrane lipid milieu, spatial segregation within and between cellular membranes and/or targeting to specific membrane-associated scaffolds are intimately involved in many signal transduction pathways. In this review, we focus on the membrane interactions of Ras proteins. These small GTPases play central roles in the regulation of cell growth and proliferation, and their excessive activation is commonly encountered in human tumors. Ras proteins associate with the membrane continuously via C-terminal lipidation and additional interactions in both their inactive and active forms; this association, as well as the targeting of specific Ras isoforms to plasma membrane microdomains and to intracellular organelles, have recently been implicated in Ras signaling and oncogenic potential. We discuss biochemical and biophysical evidence for the roles of specific domains of Ras proteins in mediating their association with the plasma membrane, and consider the potential effects of lateral segregation and interactions with membrane-associated protein assemblies on the signaling outcomes.  相似文献   

19.
Subcellular localization of Ras proteins to the plasma membrane is accomplished in part by covalent attachment of a farnesyl moiety to the conserved CaaX box cysteine. Farnesylation targets Ras to the endoplasmic reticulum (ER), where additional processing steps occur, resulting in translocation of Ras to the plasma membrane. The mechanism(s) by which this occurs is not well understood. In this report, we show that plasma membrane localization of Ras2p in Saccharomyces cerevisiae does not require the classical secretory pathway or a functional Golgi apparatus. However, when the classical secretory pathway is disrupted, plasma membrane localization requires Erf2p, a protein that resides in the ER membrane and is required for efficient palmitoylation of Ras2p. Deletion of ERF2 results in a Ras2p steady-state localization defect that is more severe when combined with sec-ts mutants or brefeldin A treatment. The Erf2p-dependent localization of Ras2p correlates with the palmitoylation of Cys-318. An Erf2p-Erf4p complex has recently been shown to be an ER-associated palmitoyltransferase that can palmitoylate Cys-318 of Ras2p (S. Lobo, W. K. Greentree, M. E. Linder, and R. J. Deschenes, J. Biol. Chem. 277:41268-41273, 2002). Erf2-dependent palmitoylation as well as localization of Ras2p requires a region of the hypervariable domain adjacent to the CaaX box. These results provide evidence for the existence of a palmitoylation-dependent, nonclassical endomembrane trafficking system for the plasma membrane localization of Ras proteins.  相似文献   

20.
Dynamic plasma membrane rearrangements occur during many cellular processes including endocytosis, morphogenesis, and migration. Actin polymerization together with proteins that directly deform membranes, such as the BAR superfamily proteins, is essential for generation of membrane invaginations during endocytosis. Importantly, recent studies revealed that direct membrane deformation contributes also to the formation of plasma membrane protrusions such as filopodia and lamellipodia. Inverse BAR (I-BAR) domain proteins bind phosphoinositide-rich membrane with high affinity and generate negative membrane curvature to induce plasma membrane protrusions. I-BAR domain proteins, such as IRSp53, MIM, ABBA, and IRTKS also harbor many protein-protein interaction modules that link them to actin dynamics. Thus, I-BAR domain proteins may connect direct membrane deformation to actin polymerization in cell morphogenesis and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号