首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Observations of search behavior in the predatory stinkbugPodisus maculiventris (Say) suggested that vibrations produced by prey as they chew on leaves may be an important cue used by this predator to locate prey. To test this hypothesis, studies were conducted to determine ifP. maculiventris search and make directional choices in response to vibrational stimuli produced by feeding green cloverworms,Plathypena scabra (F.), and to recordings of chewing vibrations. Modified soybean plants [Glycine max (L.)] were used in Y-choice tests. Individuals exposed to vibrational signals finished trials significantly more often on branches through which vibrations entered the plants than on no-stimulus branches. Also, a significantly higher proportion of individuals that initially moved onto branches with no stimulus reversed course than did those moving up branches with vibrational stimuli. The response ofP. maculiventris individuals to vibrational signals produced by a common prey species demonstrates that these predators are capable of using substrate-borne vibrations as cues for prey location.  相似文献   

3.
It is believed that habitat heterogeneity can change the extent of predator-prey interactions. Therefore, in this study we examined the effect of habitat heterogeneity (characterized here as an addition of refuge) on D. ater predation on M. domestica. Predation of D. ater on M. domestica larvae was carried out in experimental habitats with and without refuge, and examined at different prey densities. The number of prey eaten by beetles over 24 h of predator-prey interaction was recorded, and we investigated the strength of interaction between prey and predator in both experimental habitats by determining predator functional response. The mean number of prey eaten by beetles in the presence of refuge was significantly higher than in the absence of refuge. Females had greater weight gains than males. Logistic regression analyses revealed the type II functional response for both experimental habitats, even though data did not fit well into the random predator model. Results suggest that the addition of refuge in fact enhanced predation, as prey consumption increased in the presence of refuge. Predators kept in the presence of refuge also consumed more prey at high prey densities. Thus, we concluded that the addition of refuge was an important component mediating D. ater-M. domestica population interactions. Refuge actually acted as a refuge for predators from prey, since prey behaviors detrimental to predators were reduced in this case.  相似文献   

4.
Displacement of herbivorous insects by the presence of predators on whole plants has rarely been studied. By semi-continuous observations of an externally feeding insect herbivore and a predator, we show how the mere presence of the predator, Geocoris lubra Kirkaldy (Hemiptera: Geocoridae), on a plant can have a strong influence on the movement and behaviors of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae. The presence of predators, as opposed to mortality by predators, influenced the proportion of larvae feeding, resting and implementing avoidance activities. In addition, the proportion of time individual larvae allocated to feeding, resting and dropping off plants was affected when predators were present with and without contact between the two. Predators do more than just reduce numbers of herbivores; they influence feeding, displacement and subsequently the distribution of plant damage.  相似文献   

5.
If generalist insect predators are a selective force contributing to patterns of feeding specialization by insect herbivores, then predators should be deterred from eating allelochemical-fed prey. The attack and feeding behaviors of naive predators (Podisus maculiventris stinkbugs) reared on control caterpillars (Manduca sexta) fed plain diet were compared to experienced predators reared on caterpillars fed tomato allelochemicals. Tomatine-fed prey were found more quickly by both naive and tomatine-experienced predators, and chlorogenic acid-experienced predators were more stimulated to begin searching for prey. However, experienced predators were less likely to attack both chlorogenic acidfed and tomatine-fed caterpillars than were naive predators. These results indicate that allelochemical-fed prey were easier for predators to locate, but allelochemical-containing prey often deterred predation by experienced predtors.  相似文献   

6.
It is well known that a predator has the potential to regulate a prey population only if the predator responds to increases in prey density and inflicts greater mortality rates. Predators may cause such density-dependent mortality depending on the nature of the functional and numerical responses. Yet, few studies have examined the relationship between the addition of refuges and the characteristic of functional response fits. We investigated whether addition of a refuge changed the type of functional response exhibited by Dermestes ater on Musca domestica, comparing the inherent ability of D. ater to kill houseflies in the absence and in the presence of refuge. An additional laboratory experiment was also carried out to assess handling and searching times exhibited by D. ater. Logistic regression analyses revealed a type III functional response for predator–prey interaction without refuge, and results were described by the random predator equation. The mean number of prey killed did not differ between experimental habitats, indicating that the addition of refuge did not inhibit predation. However, predators that interacted with prey without refuge spent less time searching for prey at higher densities, increasing predatory interaction. We concluded that this interaction may be weak, because data from experiments with refuge fitted poorly to models. However, the high variability and the nonsignificance of the data from the experiment with refuge show the importance of refuge for promoting spatial heterogeneity, which may prevent prey extinction.  相似文献   

7.
Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator–prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator–predator interference effects.  相似文献   

8.
Over relatively long distances, the predatory mite Phytoseiulus persimilis is able to detect volatiles produced by bean plants that are infested by its prey, Tetranychus urticae, the twospotted spider mite. Our investigation examined the separate and combined effects of prey, their products, and prey-induced plant volatiles on when P. persimilis left a potential prey host plant. In wind tunnels, we assessed the relative importance of and interaction among local and distant prey-related cues. The examination of local cues included: (1) all local cues (prey eggs, webbing, and prey-induced plant volatiles), (2) food (prey eggs) and webbing only, (3) plant volatiles only, and (4) no prey-related cues. The examination of distant cues involved the presence or absence of prey-induced plant volatiles from upwind plants. External volatile cues, produced by placing prey-infested plants upwind in the wind tunnel, resulted in more predators leaving downwind plants, and leaving sooner, than when clean plants were upwind, regardless of the availability of prey or prey-related cues on the local plant. However, local cues, especially the presence of food/webbing, had a greater effect than distant cues on timing of predator leaving. Predators remained in larger numbers and for longer times on prey-infested plants. However, the presence of either locally-produced plant volatiles or food/webbing alone still reduced the number of predators leaving a plant in the first hour compared to clean plants. After the first hour, the number of predators leaving was primarily driven by the presence of food/webbing. When no food/webbing was available, predators left plants rapidly; if food/webbing was available, some predatory mites remained on plants at least 24 hours. Even if no food/webbing was available, predators presented with local volatiles remained on plants for several hours longer than on clean plants without local volatiles. These small changes in leaving rates may lead to differences in local population dynamics, and possibly regional persistence, of the predator-prey interaction in patchy environments.  相似文献   

9.
Behavioral responses by three acarine predators, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to different egg and webbing densities of the spider mite Tetranychus urticae (Acari: Tetranychidae) on rose leaflets were studied in the laboratory. Prey patches were delineated by T. urticae webbing and associated kairomones, which elicit turning back responses in predators near the patch edge. Only the presence of webbing affected predator behavior; increased webbing density did not increase patch time. Patch time increased with increased T. urticae egg density in the oligophagous P. persimilis, but was density independent in the polyphagous species T. occidentalis and A. andersoni. Patch time in all three species was more strongly correlated with the number of prey encounters and attacks than with the actual prey number present in the patch. Patch time was determined by (a) the turning back response near the patch edge; this response decayed through time and eventually led to the abandonment of the patch, and (b) encounters with, and attacks upon, prey eggs; these prolonged patch time by both an increment of time spent in handling or rejecting prey and an increment of time spent searching between two successive prey encounters or attacks. Although searching efficiency was independent of prey density in all three species, the predation rate by P. persimilis decreased with prey density because its searching activity (i.e. proportion of total patch time spent in searching) decreased with prey density. Predation rates by T. occidentalis and A. andersoni decreased with prey density because their searching activity and success ratio both decreased with prey density. The data were tested against models of predator foraging responses to prey density. The effects of the degree of polyphagy on predator foraging behavior were also discussed.  相似文献   

10.
  1. Predator–prey models are often used to represent consumptive interactions between species but, typically, are derived using simple experimental systems with little plasticity in prey or predator behaviours. However, many prey and predators exhibit a broad suite of behaviours. Here, we experimentally tested the effect of density-dependent prey and predator behaviours on per capita relative mortality rates using Florida bass (Micropterus floridanus) consuming juvenile Bluegill (Lepomis macrochirus).
  2. Experimental ponds were stocked with a factorial design of low, medium, and high prey and predator densities. Prey mortality, prey–predator behaviours, and predator stomach contents were recorded over or after 7 days. We assumed the mortality dynamics followed foraging arena theory. This pathologically flexible predator–prey model separates prey into invulnerable and vulnerable pools where predators can consume prey in the latter. As this approach can represent classic Lotka–Volterra and ratio-dependent dynamics, we fit a foraging arena predator–prey model to the number of surviving prey.
  3. We found that prey exhibited density-dependent prey behaviours, hiding at low densities, shoaling at medium densities, and using a provided refuge at high densities. Predators exhibited ratio-dependent behaviours, using an ambush foraging mode when one predator was present, hiding in the shadows at low prey–high predator densities, and shoaling at medium and high prey–high predator densities. The foraging arena model predicted the mortality rates well until the high prey–high predator treatment where group vigilance prey behaviours occurred and predators probably interfered with one another resulting in the model predicting higher mortality than observed.
  4. This is concerning given the ubiquity of predator–prey models in ecology and natural resource management. Furthermore, as Allee effects engender instability in population regulation, it could lead to inaccurate predictions of conservation status, population rebuilding or harvest rates.
  相似文献   

11.
Aggregative responses by the predatory mites, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to spatial variation in the density of mobile stages of Tetranychus urticae (Acari: Tetranychidae) were studied over different spatial scales on greenhouse roses. Significant spatial variations in prey numbers per leaflet, per leaf, per branch or per plant were present in all experimental plots. None of the predator species responded to prey numbers per plant, and all searched randomly among plants. Within a plant, the oligophagous P. persimilis searched randomly among branches, but aggregated strongly among leaves within a branch and among leaflets within a leaf. The narrowly polyphagous T. occidentalis searched randomly among leaflets within a leaf and amond leaves within a branch, but aggregated strongly among leaflets or leaves within a plant. The boradly polyphagous A. andersoni searched randomly among leaflets within a leaf, a branch or a plant, and among leaves within a branch or a plant, but distributed themselves more often on branches with lower prey densities. Thus, specialist predators aggregate strongly at lower spatial levels but show random search at higher spatial levels, whereas generalist predators show random search at lower spatial levels but aggregate at higher spatial levels. This is the first empirical evidence demonstrating the relation between the degree of polyphagy and the spatial scale of aggregation. It is also concluded that both the prey patch size (i.e. grain) and predator foraging range (i.e. extent) are important for analyzing spatial scales of predator aggregation. The importance of studying spatial scale of aggregation is also discussed in relation to predator-prey metapopulation dynamics.  相似文献   

12.
Twenty-four-hour attack rates and the search strategy of third instar Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) attacking 1 to 16 third instar Planococcus citri Risso (Homoptera: Pseudococcidae) were measured on green and yellow-variegated Solenostemon scutellarioides (L.) Codd (= Coleus blumei (Bentham)) (Labiatae) plants of different sizes. Selected life history characteristics of C. montrouzieri fed different amounts of P. citri as prey from third instar to adults were also examined. On average, predators attacked 1 to 4 mealybugs, depending on the number of mealybugs and plant size. There was no effect of plant color on attack rates. Attack rates were positively related to prey density, whereas the estimated area searched by predators was inversely related to prey density. Analyses suggest that leaf area was the plant characteristic that most affected attack rates. Predators fed few prey had a decrease in body weight and survival. The implications for the use of C. montrouzieri in biological control are discussed.  相似文献   

13.
Transport and retention of the insect growth regulators (IGRs) diflubenzuron and pyriproxyfen in larvae of the beet armywormSpodoptera exigua (Hübner) and in nymphs of the predatory bugPodisus maculiventris (Say) were investigated. In a first experiment, the retention of orally administered [14C]radiolabeled isotopes of both compounds in fifth-instar larvae of the beet armyworm was studied. Rate of excretion of both IGRs inS. exigua caterpillars was high, with a 50% excretion time of approximately 6 h after intake. In a second experiment, the transport of the compounds from prey to predator and their retention inside the predator were studied. Fifthinstar nymphs ofP. maculiventris were allowed to feed on caterpillars that had been given contaminated food. For both diflubenzuron and pyriproxyfen, more than 80% of the amount of radiolabel applied was recovered in consumed prey. Low levels of radioactivity (c. 3% of the applied amount of radiolabel) were also found in the fluid regurgitated by the prey larvae when attacked by the predatory bugs. Relatively small amounts of radiolabel (c. 8 and 15% of the amount orally applied to the prey for diflubenzuron and pyriproxyfen, respectively) were ingested byP. maculiventris nymphs when feeding on beet armyworm caterpillars. The data suggest that the predators did not use gut content as food. The pattern of excretion in nymphs ofP. maculiventris differed between compounds. For diflubenzuron, there was a drastic decrease of radioactivity inside the predator body of around 40% within the first 6 h and then the level of retained radiolabel remained stable at 3–4% up to 72 h. For pyriproxyfen, a slow decrease of radioactivity inside the body was observed and at 72 h only 2% of the applied quantity was detected. Results of this study are discussed in relation to the findings from previous studies on the toxicity of both IGRs toP. maculiventris.  相似文献   

14.
Understanding the factors that influence the ability of predators to find and kill herbivores is central to enhancing their impact on prey populations, but few studies have tested the impact of these factors on predation rates in realistic foraging environments. Using the tri‐trophic system consisting of tomato, Solanum lycopersicum L. (Solanaceae), hornworm caterpillars, Manduca sexta L. (Lepidoptera: Sphingidae), and the predaceous stink bug Podisus maculiventris (Say) (Hemiptera: Pentatomidae), we measured the effects of associative learning and plant volatile camouflage on predator behavior and foraging efficiency in field enclosures. To do so, we compared experienced vs. naive individuals under varying environmental contexts. Experienced predators were those with prior exposure to induced volatiles from the tomato–caterpillar association, whereas naive predators had not experienced tomato, only prey (caterpillars). We varied their environmental foraging matrix using either (1) tomato surrounded by basil (Ocimum basilicum L.; Lamiaceae) or (2) tomato exposed to the synthetic volatile, methyl salicylate (MeSA). We found that (1) experienced predators were more efficient than naive predators, capturing 28% more prey; (2) the tomato–basil combination did not affect predator–prey interactions; and (3) constitutive emission of synthetic MeSA caused a 22% reduction in P. maculiventris predation rate. These differences corresponded with distinct shifts in predator foraging; for example, experienced individuals were less stationary and exhibited unique behaviors such as stylet extension. Taken together, these results suggest that it is possible to improve the function of generalist predators in suppressing prey by coupling odors with food. However, constitutive emission of volatiles to attract natural enemies may ultimately camouflage neighboring plants, reducing the benefits of orientation to learned stimuli such as induced volatiles.  相似文献   

15.
Information specificity can be important to animals in makingoptimal decisions. However, it is not always necessary to useevery level of specificity. We analyzed the response of thepredatory mite Phytoseiulus persimilis to plant-produced informationrelated to a nonprey herbivore. This predator is a specialistfeeding on spider mites in the genus Tetranychus. Caterpillarsof Spodoptera exigua cannot serve as prey. Plants respond toan infestation by herbivores with the emission of volatilesthat attract carnivorous enemies of the herbivores. Conspecific plants infested with different herbivore species can emit blendsthat are qualitatively identical, while differing in the ratiosof blend components. However, different plant species emitvolatile blends that differ qualitatively. We demonstratedthat the predator P. persimilis is attracted to volatiles frombean plants infested with S. exigua caterpillars, but thatthis attraction is affected by predator starvation and host-plantexperience. One-hour and 24-h starved predators were made to represent predators that just lost a prey patch versus predatorsthat have totally lost a prey patch. Predators reared on spidermites on bean were attracted to bean plants infested with caterpillarswhen starved for 1 h but not when starved for 24 h. Both predatorgroups were attracted to bean plants infested with prey (i.e.,spider mites). One-hour starved predators can use the odorto relocate the rewarding prey patch they just lost contactwith, and using a general olfactory representation of the blendis sufficient for relocation. In contrast, for 24-h starvedpredators, the perception of a plant's odor blend is unlikelyto represent the prey patch lost, and discriminating betweenan odor blend representing prey or nonprey will avoid investingtime in finding a nonprey herbivore. In contrast, predatorsthat had been reared on spider mites on cucumber and thus hadexperienced a qualitatively different odor blend were not attractedto volatiles from caterpillar-infested bean plants. They wereattracted to spider mite-infested bean plants, irrespectiveof starvation level. To cucumber-experienced predators, theperception of bean plant odor cannot represent the prey patch lost, but only a new prey patch. Being discriminative and onlyresponding to prey-infested plants is adaptive in this situation.Our results are discussed in the context of optimal informationprocessing.  相似文献   

16.
The behavioural response of the predatory mite Phytoseiulus persimilis to volatiles from several host plants of its prey, spider mites in the genus Tetranychus, was investigated in a Y-tube olfactometer. A positive response to volatiles from tomato leaves and Lima bean leaves was recorded, whereas no response was observed to volatiles from cucumber leaves, or leaves of Solanum luteum and Solanum dulcamara.Different results were obtained for predators that differed in rearing history. Predators that were reared on spider mites (Tetranychus urticae) on Lima bean leaves did respond to volatiles from Lima bean leaves, while predators that had been reared on the same spider mite species but with cucumber as host plant did not respond to Lima bean leaf volatiles. This effect is compared with the effect of rearing history on the response of P. persimilis to volatile allelochemicals of prey-infested plant leaves.  相似文献   

17.
This study examined the effects of feeding interval, access to host plants (thus, a source of sap), and plant defenses on the predatory insect, Podisus maculiventris Say (Hemiptera: Pentatomidae). The experiment consisted of a 2 × 2 design with two feeding intervals (1 day or 5 days) and predators living on either tomato plants or plastic plants. Females fed every day had greater body weights and egg hatch rates than females fed every five days. Females on tomato plants lived longer than females on plastic plants. However, access to plants did not alleviate the effects of low prey level on predator weight or reproductive output. In a second experiment, third instar nymphs were placed on either tomato plants or plastic plants for four days to examine the effects of tomato trichome defenses on these predators. Nymphs on tomato plants experienced 50% mortality compared to 15% mortality for nymphs on plastic plants. Some nymphs living on tomato plants were trapped by the hairy trichomes of the plant; others had gummed up legs from the exudates of the plants’ glandular trichomes, which inhibited their movement and ability to feed on prey. Although predators appeared to benefit from feeding on tomato plants, their ability to live on the plants was negatively affected by the defensive features of the plants. The potential effects of trichome defenses on predator survival and population dynamics must be considered when evaluating the benefits of plants on insect predator life histories and efficacy as biological control agents.  相似文献   

18.
Predators and prey are often engaged in a game where their expected fitnesses are affected by their relative spatial distributions. Game models generally predict that when predators and prey move at similar temporal and spatial scales that predators should distribute themselves to match the distribution of the prey's resources and that prey should be relatively uniformly distributed. These predictions should better apply to sit-and-pursue and sit-and-wait predators, who must anticipate the spatial distributions of their prey, than active predators that search for their prey. We test this with an experiment observing the spatial distributions and estimating the causes of movements between patches for Pacific tree frog tadpoles (Pseudacris regilla), a sit-and-pursue dragonfly larvae predator (Rhionaeschna multicolor), and an active salamander larval predator (Ambystoma tigrinum mavortium) when a single species was in the arena and when the prey was with one of the predators. We find that the sit-and-pursue predator favors patches with more of the prey's algae resources when the prey is not in the experimental arena and that the prey, when in the arena with this predator, do not favor patches with more resources. We also find that the active predator does not favor patches with more algae and that prey, when with an active predator, continue to favor these higher resource patches. These results suggest that the hunting modes of predators impact their spatial distributions and the spatial distributions of their prey, which has potential to have cascading effects on lower trophic levels.  相似文献   

19.
20.
  • 1 The searching behaviour of A.confusus females was investigated in an artificial arena.
  • 2 Females showed an increase in the frequency of turning movements following feeding and this concentrated search in a small area. As a result more prey were found in areas where prey distribution was clumped.
  • 3 If no prey was encountered within 5–8 min the search track straightened out.
  • 4 First and second instar nymphs searching on broad bean plants moved faster on the undersides of leaves which were the sites most likely to support aphid populations. A considerable proportion of available time was wasted in periods of inactivity.
  • 5 It was concluded that while plant topography strongly influences search pattern, the underlying trend demonstrated in these experiments was of advantage to predators searching for colonial prey.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号