首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lotus species are forage legumes with potential as pastures in low-fertility and environmentally constrained soils, owing to their high persistence and yield under those conditions. The aim of this work was the characterization of phenetic and genetic diversity of salt-tolerant bacteria able to establish efficient symbiosis with Lotus spp. A total of 180 isolates able to nodulate Lotus corniculatus and Lotus tenuis from two locations in Granada, Spain, were characterized. Molecular identification of the isolates was performed by repetitive extragenic palindromic PCR (REP-PCR) and 16S rRNA, atpD, and recA gene sequence analyses, showing the presence of bacteria related to different species of the genus Mesorhizobium: Mesorhizobium tarimense/Mesorhizobium tianshanense, Mesorhizobium chacoense/Mesorhizobium albiziae, and the recently described species, Mesorhizobium alhagi. No Mesorhizobium loti-like bacteria were found, although most isolates carried nodC and nifH symbiotic genes closely related to those of M. loti, considered the type species of bacteria nodulating Lotus, and other Lotus rhizobia. A significant portion of the isolates showed both high salt tolerance and good symbiotic performance with L. corniculatus, and many behaved like salt-dependent bacteria, showing faster growth and better symbiotic performance when media were supplemented with Na or Ca salts.Legumes can establish nitrogen-fixing associations with Gram-negative soil bacteria collectively known as rhizobia. Although the symbiotic relationships among rhizobia and many legume species of agricultural importance have been intensively studied, relatively little is known about the symbiotic bacteria of certain plant genera. Lotus is a genus of legumes that includes 125 to 130 species of herbs and small shrubs, mainly distributed in the Northern Hemisphere. Several Lotus species, particularly Lotus corniculatus, Lotus uliginosus, and Lotus tenuis, are used as pasture forage worldwide and are included by phylogenetic studies in the same clade as the model legume Lotus japonicus (4). Until recently, bacteria nodulating Lotus included both intermediate-growing (mesorhizobia) and slow-growing bacteria (12, 16). The mesorhizobia can form effective symbioses with certain Lotus spp. (group I, e.g., L. corniculatus, L. tenuis, or L. japonicus) but form tumor-like structures that do not contain bacteria on L. uliginosus, Lotus subbiflorus, and Lotus angustissimus (group II Lotus spp.) (21, 24). On the other hand, slow-growing strains are usually efficient with Lotus group II species but form no nodules or form inefficient nodules in group I species (12). However, there are rare exceptions to this rule, like strain NZP2037, that can form effective symbioses with both groups of Lotus spp. (23, 25, 28). Furthermore, fast-growing Ensifer meliloti bv. lancerottense strains have been shown to be the symbionts of Lotus lancerottensis but are unable to fix nitrogen with either group I or group II Lotus spp. (19).No apparent relationship exists between the phylogenetic position of Lotus spp. and the type of rhizobia associated. For instance, L. uliginosus and L. angustissimus, which are efficiently nodulated by the bradyrhizobia, are clustered in the same clade as L. corniculatus, L. tenuis, and L. japonicus (clade B) (4), species associated with mesorhizobia. In contrast L. subbiflorus, usually associated with the same rhizobia as L. uliginosus, is clustered in a different clade.The narrow-host-range rhizobia associated with L. corniculatus and other Lotus species were initially classified as Rhizobium loti (13). Later, when the genus Mesorhizobium was created, R. loti was reclassified as Mesorhizobium loti (14), which is considered the type species. Besides the expected differences between the moderate- and the slow-growing Lotus rhizobia, large variabilities in nitrogen-fixing effectiveness (23) as well as in total DNA-DNA hybridization (3, 6) and phylogeny (5, 40) have been shown among the “meso-growing” rhizobia strains classified as M. loti, indicating that they do not form a homogeneous group. Indeed, one of the best-characterized strains of M. loti, strain MAFF303099, has been reclassified as Mesorhizobium huakuii biovar loti (35). In fact, diverse rhizobia have recently been reported to establish symbiosis with Lotus group I species. For instance, bacteria belonging to the newly described species Mesorhizobium gobiense and Mesorhizobium tarimense, were isolated from Lotus frondosus and L. tenuis in China (10). Also, rhizobia assigned to different genera (Rhizobium, Mesorhizobium, Agrobacterium, and Aminobacter) have recently been reported as symbionts of L. tenuis in the Salado River Basin in Argentina (7). While these recent reports indicate that bacteria nodulating Lotus spp. are diverse, their symbiotic genes are rather homogeneous. In fact, most isolates from Argentina and China, regardless their taxonomic assignment, had symbiotic genes closely related to M. loti (7, 10).Soil salinity is a serious and expanding threat to agricultural productivity. Improving crop productivity in saline soils requires selection of well-adapted plant genotypes and, in the case of legumes, highly efficient rhizobial partners adapted to soil conditions. As part of the Euro-South American cooperation project LOTASSA (http://www.lotassa.com/), and aiming to isolate and select for salt-tolerant bacteria able to establish efficient symbiosis with forage Lotus spp., we explored the diversity of Lotus rhizobia in two different locations of Granada province, Spain, where the presence of native Lotus spp. had previously been reported (30).  相似文献   

2.
Lotus tenuis (Wadst. & Kit.) is a perennial legume widely grown for pasture in the flood-prone and salt affected Pampa region of Argentina. The physiology of salt and waterlogging tolerance in L. tenuis (four cultivars) was evaluated, and compared with Lotus corniculatus (three cultivars); the most widely cultivated Lotus species. Overall, L. tenuis cultivars accumulated less Na+ and Cl, and more K+ in shoots than L. corniculatus cultivars, when exposed to 200 mM NaCl for 28 days in aerated or in stagnant solutions. Root porosity was higher in L. tenuis cultivars due to greater aerenchyma formation. In a NaCl dose–response experiment (0–400 mM NaCl in aerated solution), L. tenuis (cv. Chaja) accumulated half as much Cl in its shoots than L. corniculatus (cv. San Gabriel) at all external NaCl concentrations, and about 30% less shoot Na+ in treatments above 250 mM NaCl. Ion distributions in shoots were determined for plants at 200 mM NaCl. L. tenuis (cv. Chaja) again accumulated about half as much Cl in old leaves, young leaves and stems, compared with concentrations in L. corniculatus (cv. San Gabriel). There were not, however, significant differences between the two species for Na+ concentrations in the various shoot tissues. The higher root porosity, and maintenance of lower shoot Cl and Na+ concentrations in L. tenuis, compared with L. corniculatus, contributes to the greater tolerance to combined salt and waterlogging stress in L. tenuis. Moreover, significant variation for tolerance to combined salinity and waterlogging stress was identified within both L. tenuis and L. corniculatus.  相似文献   

3.
 To resolve the maternal parentage of the tetraploid Lotus corniculatus, restriction-site variation of chloroplast DNA (cpDNA) was studied in several accessions of that species, in the four putative parental diploid species, L. tenuis, L. alpinus, L. japonicus and L. uliginosus, and in four phylogenetically more distant diploid species, L. hispidus, L. edulis, L. ornithopodoides and Tetragonolobus maritimus var. siliquosus. Evidence of cpDNA maternal inheritance was obtained by using reciprocal controlled crosses between plants of L. corniculatus and natural tetraploid individuals of L. alpinus showing very distinct restriction patterns. Interspecific cpDNA variation in the eight Lotus species and T. siliquosus was analysed by comparing cpDNA fragment patterns produced by five restriction endonucleases and totalling 304 distinct fragments. Genetic differentiation in cpDNA was very high between the L. corniculatus group and L. hispidus on the one hand, and the three other species on the other hand. Sixteen restriction-site mutations and eight length polymorphisms were identified among the five species of the L. corniculatus group and L. hispidus, Lotus uliginosus, L. alpinus and L. japonicus showed at least six DNA changes with regard to the molecule of L. corniculatus. Accordingly, these species should be excluded as maternal progenitors of L. corniculatus. Conversely, the cpDNA of L. tenuis differed from that of L. corniculatus by only two small-length mutations. As also suggested previously from an analysis of several nuclear markers, the results reported here show decisively that L. tenuis may be considered as the most probable maternal ancestor of L. corniculatus. Received: 23 February 1997/Accepted: 28 February 1997  相似文献   

4.

Aims

In the past decades the increasing focus by Australian pasture development programs on the genus Lotus has seen the evaluation of many species previously untested in Australia. In field trials, nodulation failure was commonplace. This work was undertaken to select effective symbionts for Lotus to ensure further agronomic evaluation of the genus was not compromised. The symbiotic needs of Lotus ornithopodioides were a particular focus of the studies.

Methods

Glasshouse experiments were undertaken to evaluate symbiotic relationships between 15 Lotus spp and 23 strains of nodulating Mesorhizobium loti. This was followed by evaluation of elite rhizobial strains for their ability to persist and form nodules under field conditions.

Results

Complex symbiotic interactions were recorded between strains of lotus rhizobia and the different species of Lotus. Notably, the rhizobia that are currently provided commercially in Australia for the inoculation of Lotus corniculatus (strain SU343) and Lotus uliginosus (strain CC829) did not form effective symbioses with the promising species L. ornithopodioides and L. maroccanus. No strain we evaluated was compatible with all the Lotus species, however several strains with a broad host range were identified. WSM1293 and WSM1348 were the most effective strains on L. ornithopodioides and L. peregrinus.These strains were also moderately effective on L. corniculatus (79 and 52% of SU343), less effective on L. maroccanus (26 and 49% of SRDI110) but were ineffective on L. uliginosus. The latter species overall had very specific rhizobial needs. Both WSM1293 and WSM1348 produced adequate levels of nodulation when inoculated on L. ornithopodioides, over two seasons at three field sites.

Conclusions

Effective and persistent strains are now available that should allow the un-compromised evaluation of many of the contemporary Lotus species in the field. Selecting a strain for use in commercial inoculants will be more problematic, given the very large host-strain interactions for nitrogen fixation. Here, the balance of Lotus species which are adopted by farmers will have a strong bearing on which rhizobial strains are progressed to commerce.  相似文献   

5.
6.
The ability of random amplified polymorphic DNA (RAPD) to distinguish among different taxa of Lotus was evaluated for several geographically dispersed accessions of four diploid Lotus species, L. tennis Waldst. et Kit, L. alpinus Schleich., L. japonicus (Regel) Larsen, and L. uliginosus Schkuhr and for the tetraploid L. corniculatus L., in order to ascertain whether RAPD data could offer additional evidence concerning the origin of the tetraploid L. corniculatus. Clear bands and several polymorphisms were obtained for 20 primers used for each species/accession. The evolutionary pathways among the species/accessions presented in a cladogram were expressed in terms of treelengths giving the most parsimonious reconstructions. Accessions within the same species grouped closely together. It is considered that L. uliginosus which is most distantly related to L. corniculatus, may be excluded as a direct progenitor of L. corniculatus, confirming previous results from isoenzyme studies. Lotus alpinus is grouped with accessions of L. corniculatus, which differs from previous studies. With this exception, these findings are in agreement with previous experimental studies in the L. corniculatus group. The value of the RAPD data to theories on the origin of L. corniculatus is discussed.  相似文献   

7.
Summary Earlier students of the origin of Lotus corniculatus suggested that this tetraploid species arose as an autotetraploid of the closely related diploid species L. tenuis or L. alpinus. More recent studies suggested that L. alpinus and L. japonicus could be ancestral forms. The present study of tannin content, phenolic content, cyanide production, morphology, cytogenetics, Rhizobium specificity and self-incompatibility in the corniculatus group virtually excludes the possibility that L. corniculatus could have arisen through autopolyploidy of L. tenuis or L. alpinus, and suggests that L. corniculatus arose through hybridization of L. alpinus and/or L. tenuis (probably as female parent) with L. uliginosus (probably as male parent), followed by chromosome doubling in the hybrid.  相似文献   

8.
Summary An isoenzyme survey was conducted for several geographically dispersed accessions of four diploid Lotus species, L. alpinus Schleich., L. japonicus (Regel) Larsen, L. tenuis Waldst. et Kit and L. uliginosus Schkuhr, and for the tetraploid L. corniculatus L., in order to ascertain whether isoenzyme data could offer additional evidence concerning the origin of L. corniculatus. Seven enzyme systems were examined using horizontal starch gel electrophoresis. These were PGI, TPI, MDH, IDH, PGM, 6-PGDH, and ME. Lotus uliginosus had monomorphic unique alleles, that were not found within L. corniculatus, at 7 loci. These loci and alleles are: Tpi1-112, Pgm1,2-110, Pgm3-82, Mdh3-68, 6-Pgdh1-110, 6-Pgdh2-98,95, and Me2-100. Other diploid taxa contained alleles found in L. corniculatus for these and other loci. The implications of the isoenzyme data to theories on the origin of L. corniculatus are discussed.Communicated by H. F. Linskens  相似文献   

9.
Eleven strains were isolated from root nodules of Lotus endemic to the Canary Islands and they belonged to the genus Ensifer, a genus never previously described as a symbiont of Lotus. According to their 16S rRNA and atpD gene sequences, two isolates represented minority genotypes that could belong to previously undescribed Ensifer species, but most of the isolates were classified within the species Ensifer meliloti. These isolates nodulated Lotus lancerottensis, Lotus corniculatus and Lotus japonicus, whereas Lotus tenuis and Lotus uliginosus were more restrictive hosts. However, effective nitrogen fixation only occurred with the endemic L. lancerottensis. The E. meliloti strains did not nodulate Medicago sativa, Medicago laciniata Glycine max or Glycine soja, but induced non-fixing nodules on Phaseolus vulgaris roots. nodC and nifH symbiotic gene phylogenies showed that the E. meliloti symbionts of Lotus markedly diverged from strains of Mesorhizobium loti, the usual symbionts of Lotus, as well as from the three biovars (bv. meliloti, bv. medicaginis, and bv. mediterranense) so far described within E. meliloti. Indeed, the nodC and nifH genes from the E. meliloti isolates from Lotus represented unique symbiotic genotypes. According to their symbiotic gene sequences and host range, the Lotus symbionts would represent a new biovar of E. meliloti for which bv. lancerottense is proposed.  相似文献   

10.
The pasture legumes Lotus uliginosus (Schk.) and Lotus corniculatus (L.), known to differ in their tolerance to flooding, were inoculated with Rhizobium loti and flooded for 60 d while subjected to two levels of dissolved pO2: 0.241 and 0.094 mol ml-1. L. uliginosus showed significantly greater growth (shoot and root) and N2 fixation under both pO2s, compared to L. corniculatus, although growth and N2 fixation by L. corniculatus was not affected by the low pO2. Surprisingly, in L. uliginosus., growth, nodulation and N2 fixation were all increased by low pO2 while nodulation of L. corniculatus where low pO2 plants showed a significant increase over that of the higher pO2 plants while L. uliginosus plants showed a decline. Root porosity of L. uliginosus doubled in the low pO2-treatment from a mean of 14.5% in high pO2 roots to 28.5%, whereas that of L. corniculatus was relatively unaffected by pO2, being 7% and 9% for high and low pO2 plants, respectively. The structure of nodules differed little between species and treatments, although nodules/nodulated roots from the L. uliginosus plants had particularly profuse lenticels and aerenchyma. However, L. corniculatus nodules, especially those grown in the lower pO2 showed signs of early senescence with vacuolation of infected cells and green coloration when cut open. Leghaemoglobin (Lb) concentrations in nodules from both species were unaffected by low pO2, although that of L. corniculatus nodules, regardless of pO2, was significantly greater than L. uliginosus. Concentrations of the intercellular glycoprotein recognized by the monoclonal antibody MAC265 were significantly reduced in nodules from the low pO2 treatment in both species. Immunogold labelling showed that the MAC265 antigen was localized primarily within intercellular spaces within nodule cortices from both Lotus species. A marked decrease in deposition of the MAC265 antigen within the cortices of L. uliginosus nodules grown in the lower pO2, is discussed in terms of the relative abilities of the two Lotus spp. to maintain an O2 supply to the N2-fixing bacteroids within submerged nodules.Keywords: Lotus uliginosus, Lotus corniculatus, N2 fixation, flooding, oxygen.   相似文献   

11.
Summary Nodes ofMedicago sativa, Lotus corniculatus, Lotus tenuis, andLotus pedunculatus were cultured on MS basal media with different growth regulators. InM. sativa each node produced one shoot and the apical dominance was unaffected by high levels of cytokinins, and subsequent cycles of culture. Shoot development was stimulated by the presence ofN 6-isopentenyl-adenine in the culture medium and was dependent on the genotype of the explant. Shoot development was not affected by the original position of the node on the plant nor by the plant age. Shoots rooted in MS medium gelled with starch and containing 2 mg·liter−1 indol-3-acetic acid. In the threeLotus species, node culture was a more effective technique than inM. sativa. The number of shoots per node increased with the time of culture and with the presence of 0.05 mg·liter−1 of 6-benzylaminopurine. The highest number of shoots derived from one node was achieved inL. pedunculatus and inL. tenuis by culturing single nodes, whereas inL. corniculatus stem segments had to be totally covered by the medium for success. Rooting was easily achieved in MS medium with or without auxins.  相似文献   

12.
The legume genus Lotus includes glycophytic forage crops and other species adapted to extreme environments, such as saline soils. Understanding salt tolerance mechanisms will contribute to the discovery of new traits which may enhance the breeding efforts towards improved performance of legumes in marginal agricultural environments. Here, we used a combination of ionomic and gas chromatography‐mass spectrometry (GC‐MS)‐based metabolite profilings of complete shoots (pooling leaves, petioles and stems) to compare the extremophile Lotus creticus, adapted to highly saline coastal regions, and two cultivated glycophytic grassland forage species, Lotus corniculatus and Lotus tenuis. L. creticus exhibited better survival after exposure to long‐term lethal salinity and was more efficient at excluding Cl from the shoots than the glycophytes. In contrast, Na+ levels were higher in the extremophile under both control and salt stress, a trait often observed in halophytes. Ionomics demonstrated a differential rearrangement of shoot nutrient levels in the extremophile upon salt exposure. Metabolite profiling showed that responses to NaCl in L. creticus shoots were globally similar to those of the glycophytes, providing little evidence for metabolic pre‐adaptation to salinity. This study is the first comparing salt acclimation responses between extremophile and non‐extremophile legumes, and challenges the generalization of the metabolic salt pre‐adaptation hypothesis.  相似文献   

13.
Empirical evidence suggests that pollen chemistry plays an important role in shaping the pollen host spectra of many bee species. Although the underlying mechanisms are poorly understood, pollen diets of several plant taxa have experimentally been found to impede larval development of unspecialized bees. The pollen of all plant taxa, for which such a detrimental effect on bee larval development has been observed so far, is freely accessible in the flowers and thus easily harvestable for flower visitors, suggesting that this pollen might be chemically protected in order to reduce its loss to pollen-feeding animals. In the present study, we compared larval performance of five solitary bee species on pollen diets of the two Fabaceae species Onobrychis viciifolia and Lotus corniculatus, which have their anthers concealed inside the flowers, with that on control diets composed of host pollen provisions. As the complex flower morphology of the two Fabaceae species already considerably narrows the spectrum of pollen harvesting bee taxa, which might supersede costly chemical protection of the pollen, we expected bees that usually do not exploit Fabaceae to develop well on Onobrychis and Lotus pollen diets. Larval survival on the Onobrychis pollen diet was successful for all five bee species tested. In contrast, larval survival on the Lotus pollen diet was reduced in three species despite the fact that Lotus flowers are more difficult to exploit for pollen than Onobrychis flowers. We conclude that there is no trade-off between pollen concealment and pollen defence in Lotus and that pollen of morphologically complex flowers with a restricted visitor spectrum is not necessarily an easy-to-use nutritional source.  相似文献   

14.
A cell suspension of Lotus tenuis was established, as a sourceof protoplasts, from kanamycin resistant callus derived fromroots transformed by Agrobacterium rhizogenes LBA9402 (pRil855-pBinl9).Such protoplasts were treated with a sublethal dose of sodiumiodoacetate prior to their electrofusion with green cotyledonprotoplasts of L. corniculatus. Putative somatic hybrid colonieswere selected on medium containing kanamycin sulphate. The hybridityof plants regenerated from these selected colonies was confirmedby their morphology, esterase banding patterns, the presenceof condensed tannins in leaves and stems, and chromosome complements.The latter approximated to the expected allohexaploid numberof 2n = 6x = 36. Key words: Forage legumes, Lotus corniculatus, L. tenuis, protoplasts, electrofusion, kanamycin resistance, sodium iodoacetate, somatic hybridization  相似文献   

15.
Lotus krylovii Schischk. etSerg. undL. corniculatus L. subsp.frondosus Freyn sind zwei unterschiedliche Taxa, gekennzeichnet durch einige morphologische Merkmale.L. krylovii ist am nächsten mitL. tenuis Waldst. etKit. verwandt;L. corniculatus subsp.frondosus gehört in den Umkreis der Unterart vonL. corniculatus L., die im östlichen Teil des Areals der Art verbreitet ist. Nach ihrer Haupt-Verbreitung gehören die beiden Taxa zu den westasiatischen Arten.  相似文献   

16.
The 7-methyl ether of gossypetin occurs, as a mixture of 4 glycosides, in the yellow inflorescence of Eriogonum nudum. In contrast to previous reports, however, it does not occur in Lotus corniculatus flowers, nor is it present in leaves of Medicago sativa. The 8-methyl ether, which is present in Lotus flowers, has been found for the first time in the Compositae, in flowers of Geraea canescens.  相似文献   

17.
Transformed root cultures of Lotus corniculatus L. cv. Leo weretreated with a range of thiol and carbohydrate elicitors. Boththiol reagents and fungal carbohydrate preparations resultedin an increase in the activity of phenylalanine ammonia lyase(PAL) in a concentration-dependent manner. One representativethiol elicitor, glutathione (GSH), and one fungal elicitor,derived from Rhynchosporium orthosporum autoclaved cell walls(Ro), were analysed in more detail. Both elicitors induced thetransient accumulation of vestitol, an isoflavan phytoalexin,in tissue and in culture medium. Treatment of Lotus root cultureswith the Ro elicitor resulted in a more rapid initial accumulationof this end product when compared with GSH, however, sativan(the 2–methoxy ester of vestitol) previously reportedto co-accumulate in Lotus leaves was only detected followingelicitation with high concentrations of GSH. Ro and GSH elicitorsalso induced the accumulation of a number of other phenylpropanoidcompounds putatively identified as chalcones. The addition ofthiol and carbohydrate elicitors to Lotus root cultures alsoresulted in characteristic changes in root morphology. Glutathione,in particular, resulted in the inhibition of root growth dueto differential damage of meristem cells. Key words: Lotus corniculatus, hairy roots, elicitors, phytoalexins.  相似文献   

18.
Infection threads were observed abundantly in the root hairsof Lotus corniculatus L., but very rarely in L. hispidus, Desf.,in response to infection by Rhizobium strains 3001 and 3002.Numbers of infections differed between species and strains andwere also affected by temperature. In L. corniculatus all thenodules originated from infection threads, but in L. hispidusmost nodules appeared to originate by direct bacterial penetrationthrough the epidermis, and infected root hairs were very rarelyseen. Both species of Lotus were tolerant to cold temperatures,the minimum temperature for nodulation being 10 ?C. The optimumtemperature for nodulation of L. corniculatus was 20 ?C with3001 and between 27 and 30 ?C with 3002, a few nodules beingformed with both strains at 35 ?C. L. hispidus formed more nodulesthan L. corniculatus and the optimum temperature for both thestrains was between 25 and 27 ?C. No infection threads were seen in root hairs or nodules of Stylosanthesguyanensis (Aubl.) S. W. and S. humilis H.B.K. infected withRhizobium strain CB1552, and all the nodules were formed inthe axils of lateral roots. Optimum temperature for nodulationin S. guyanensis and S. humilis was around 27 ?C; nodulationwas completely inhibited at 15 ?C and very few nodules wereformed at 35 ?C. Both in Lotus and Stylosanthes the transfer of plants from suboptimalto optimal and supraoptimal temperatures increased nodulation.Delayed inoculation and excision of root tips increased nodulation.  相似文献   

19.
The region of Iran, Iraq, Afghanistan and the neighbouring countries is important for some groups of the speciesLotus L., especially those of the circle ofL. corniculatus L. andL. gebelia Vent. The first group is represented by the speciesL. corniculatus L. with 4 subspecies (3 of which are important for this region), andL. tenuis Waldst. etKit. which here attains the eastern boundary of the continuous area of distribution, and by the eastern speciesL. krylovii Schischk. etSerg. andL. rechingeri Chrtková-?ertová. The second group is represented by the speciesL. gebelia Vent.,L. michauxianus Ser. in DC. andL. libanoticus Boiss. their areas of distribution covering mostly those regions. Most of the species show considerable variability within the species.  相似文献   

20.
An interspecific hybridization study has been carried out between seven diploid species of Lotus (L. alpinus Schleich., L. japonicus (Regel) Larsen, L. filicaulis Dur., L. schoelleri Schweinf., L. krylovii Schischk. and Serg., L. tenuis Waldst. et Kit., and L. corniculatus var. minor Baker) closely related to L. corniculatus L. A total of 139 interspecific hybrids were produced in 16 combinations of the 7 species. Nine of these crosses were produced for the first time and four were obtained by means of embryo-culture. The growth habit, number of florets per umbel, flower color expression, HCN reaction and 15 metrical traits were compared between parents and hybrids. The relative case with which some hybrids were produced suggested that during the early evolutionary history of the genus species diversification could have originated through interspecific hybridization and subsequent gene differentiation. In some crosses, the hybrids resembled one parent more closely than the other. This close morphological affinity between the hybrids and one of their parents would make it extremely difficult to detect such hybrids in natural populations and probably aceounts for the prevailing belief that there is little or no hybridization in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号