共查询到20条相似文献,搜索用时 15 毫秒
1.
TIMOTHY J. CURRAN ROBYN L. BROWN EMILEE EDWARDS KRISTINA HOPKINS CATHERINE KELLEY ELIZABETH MCCARTHY ERIN POUNDS RENATA SOLAN JAMI WOLF 《Austral ecology》2008,33(4):451-461
Abstract Cyclones cause profound immediate impacts on tropical rainforest trees, including defoliation, limb loss, snapping of stems and uprooting. Some studies have shown that plant functional traits such as tree size, buttress roots and wood density are correlated with these forms of cyclone damage. On 20 March 2006, Severe Tropical Cyclone Larry crossed the north Queensland coast and proceeded inland across the Atherton Tablelands, impacting the critically endangered Mabi Type 5b rainforest. We investigated the effects of Cyclone Larry on common tree species by categorizing damage to trees as uprooted, snapped, limbs damaged (light, moderate, severe) or upright and estimating levels of defoliation. Damage was then related to functional traits including tree size, presence of buttress roots, wood density, and leaf size and strength. Levels of damage differed between species. Tree size (diameter at breast height) and the presence of buttress roots were not related to damage levels. Wood density was significantly negatively correlated to proportion of trees with snapped stems and significantly positively correlated with the proportion of trees upright with no or light limb damage. Levels of defoliation were significantly related to leaf strength (specific leaf area – SLA) and to leaf width, but not other components of leaf size (area or length) or petiole length. Species with high wood density and low SLA (e.g. Argyrodendron spp.) were found to have high cyclone resistance, the ability to resist damage, while species with low wood density and high SLA (e.g. Dendrocnide photinophylla) exhibited low resistance. However, traits related to low resistance are also those linked to rapid growth and high cyclone resilience, the ability to recover from damage, so it is unlikely that the Mabi forest will experience long‐term changes in floristic composition following Cyclone Larry. 相似文献
2.
3.
The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession 总被引:4,自引:0,他引:4
Jesse R. Lasky María Uriarte Vanessa K. Boukili David L. Erickson W. John Kress Robin L. Chazdon 《Ecology letters》2014,17(9):1158-1167
Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8–16 years in eight successional rainforests. We tested whether successional changes in diversity–Δbiomass correlations reflect predictions of niche theories. Diversity–Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid‐successional stands, high biodiversity was associated with greater mortality‐driven biomass loss, i.e. negative selection effects, suggesting successional niche trade‐offs and loss of fast‐growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system. 相似文献
4.
5.
Mlanie Fichaux Jason Vleminckx Elodie A. Courtois Jacques H. C. Delabie Jordan Galli Shengli Tao Nicolas Labrire Jrme Chave Christopher Baraloto Jrme Orivel 《Biotropica》2021,53(1):97-109
Ant communities are extremely diverse and provide a wide variety of ecological functions in tropical forests. Here, we investigated the abiotic factors driving ant composition turnover across an elevational gradient at Mont Itoupé, French Guiana. Mont Itoupé is an isolated mountain whose top is covered by cloud forests, a biogeographical rarity that is likely to be threatened according to climate change scenarios in the region. We examined the influence of six soil, climatic, and LiDAR‐derived vegetation structural variables on leaf litter ant assembly (267 species) across nine 0.12‐ha plots disposed at three elevations (ca. 400, 600, and 800m asl). We tested (a) whether species cooccurring within a same plot or a same elevation were more similar in terms of taxonomic, functional, and phylogenetic composition, than species from different plots/elevations, and (b) which environmental variables significantly explained compositional turnover among plots. We found that the distribution of species and traits of ant communities along the elevational gradient was significantly explained by a turnover of environmental conditions, particularly in soil phosphorus and sand content, canopy height, and mean annual relative humidity of soil. Our results shed light on the role exerted by environmental filtering in shaping ant community assembly in tropical forests. Identifying the environmental determinants of ant species distribution along tropical elevational gradients could help predicting the future impacts of global warming on biodiversity organization in vulnerable environments such as cloud forests. 相似文献
6.
运用Biolog EcoPlate技术, 对武夷山不同海拔植被带(常绿阔叶林(EBF)、针叶林(CF)、亚高山矮林(DF)、高山草甸(AM))土壤微生物群落多样性差异进行了研究。结果表明: 不同海拔植被带土壤微生物群落功能多样性差异显著。土壤平均颜色变化率(AWCD)随培养时间延长而逐渐增加, 同一深度土层的AWCD值随海拔升高而逐渐降低, 大小顺序依次为EFB > CF > DF > AM。同一海拔植被带, 不同深度土层的AWCD值总体趋势依次为0-10 cm > 10-25 cm > 25-40 cm。土壤微生物群落Simpson指数、Shannon-Wiener指数、丰富度指数和McIntosh指数的总体趋势为EBF最高, CF和DF次之, AM最低。不同海拔植被带土壤微生物对不同碳源利用强度存在较大差异, 其中EBF利用率最高, AM利用率最低, 碳水化合物和羧酸类碳源是各海拔植被带土壤微生物的主要碳源。主成分分析结果表明, 从31个因素中提取的与碳源利用相关的主成分1、主成分2分别能解释变量方差的75.27%和16.14%, 在主成分分离中起主要贡献作用的是胺类和氨基酸类碳源。土壤微生物群落多样性随着海拔上升、土层加深而逐渐下降的原因, 可能是生物量、林分凋落物、土壤养分、微小动物、植物根系等多种因素共同作用的结果。 相似文献
7.
Yoshiko Iida I‐Fang Sun Charles A. Price Chien‐Teh Chen Zueng‐Sang Chen Jyh‐Min Chiang Chun‐Lin Huang Nathan G. Swenson 《Ecology and evolution》2016,6(17):6085-6096
A fundamental goal in ecology is to link variation in species function to performance, but functional trait–performance investigations have had mixed success. This indicates that less commonly measured functional traits may more clearly elucidate trait–performance relationships. Despite the potential importance of leaf vein traits, which are expected to be related to resource delivery rates and photosynthetic capacity, there are few studies, which examine associations between these traits and demographic performance in communities. Here, we examined the associations between species traits including leaf venation traits and demographic rates (Relative Growth Rate, RGR and mortality) as well as the spatial distributions of traits along soil environment for 54 co‐occurring species in a subtropical forest. Size‐related changes in demographic rates were estimated using a hierarchical Bayesian approach. Next, Kendall's rank correlations were quantified between traits and estimated demographic rates at a given size and between traits and species‐average soil environment. Species with denser venation, smaller areoles, less succulent, or thinner leaves showed higher RGR for a wide range of size classes. Species with leaves of denser veins, larger area, cheaper construction costs or thinner, or low‐density wood were associated with high mortality rates only in small size classes. Lastly, contrary to our expectations, acquisitive traits were not related to resource‐rich edaphic conditions. This study shows that leaf vein traits are weakly, but significantly related to tree demographic performance together with other species traits. Because leaf traits associated with an acquisitive strategy such as denser venation, less succulence, and thinner leaves showed higher growth rate, but similar leaf traits were not associated with mortality, different pathways may shape species growth and survival. This study suggests that we are still not measuring some of key traits related to resource‐use strategies, which dictate the demography and distributions of species. 相似文献
8.
猫儿山不同海拔植被带土壤微生物群落功能多样性 总被引:5,自引:4,他引:5
为研究中亚热带森林土壤微生物群落功能多样性特征及其随海拔梯度的变化,应用Biolog微平板技术,对猫儿山不同海拔植被带(常绿阔叶林(EBF)、落叶阔叶混交林(DBF)、针阔混交林(CBF))土壤微生物群落功能多样性差异进行了比较。结果表明,不同海拔植被带土壤微生物群落功能多样性差异显著。土壤平均颜色变化率(AWCD)随培养时间延长而逐渐增加,随着海拔升高,土壤AWCD值逐渐降低,大小顺序为EBFDBFCBF。土壤微生物群落Shannon指数和丰富度指数的总体趋势为EBF最高,DBF次之,CBF最低。不同海拔植被带土壤微生物群落均匀度指数之间差异不显著。不同海拔植被带土壤微生物对不同碳源的利用能力存在差异,其中EBF利用率最高,CBF利用率最低,氨基酸类、胺类和酯类碳源为各海拔植被带土壤微生物利用的主要碳源。主成分分析结果表明,主成分1和主成分2分别能解释变量方差的40.42%和15.97%,在主成分分离中起主要贡献作用的是酯类、胺类和氨基酸类碳源。土壤理化性质与土壤微生物群落功能多样性之间的相关性分析结果表明,微生物群落多样性的Shannon指数与全钾(TK)呈极显著正相关(P0.01),与含水量呈极显著负相关(P0.01),与总有机碳(TOC)、全氮(TN)、速效氮(AN)、有效P(AP)之间的相关性显著(P0.05)或极显著(P0.01),且为负相关。土壤TK含量和含水量可能是造成不同海拔土壤微生物群落功能多样性差异的主要原因。 相似文献
9.
Taxonomic and functional ant diversity along a secondary successional gradient in a tropical forest 下载免费PDF全文
Maya Rocha‐Ortega Xavier Arnan José Domingos Ribeiro‐Neto Inara R. Leal Mario E. Favila Miguel Martínez‐Ramos 《Biotropica》2018,50(2):290-301
The taxonomic diversity (TD) of tropical flora and fauna tends to increase during secondary succession. This increase may be accompanied by changes in functional diversity (FD), although the relationship between TD and FD is not well understood. To explore this relationship, we examined the correlations between the TD and FD of ants and forest age in secondary forests at the α‐ and β‐diversity levels using single‐ and multi‐trait‐based approaches. Our objectives were to understand ant diversity patterns and to evaluate the role of secondary forests in the conservation of biodiversity and in the resilience of tropical forests. Ant assemblages were sampled across a chronosequence in the Lacandon region, Mexico. All species were characterized according to 12 functional ecomorphological traits relevant to their feeding behavior. We found that TD and FD were related to forest age at the alpha level, but not at the beta level. α‐functional richness and divergence increased linearly with species richness and diversity, respectively. Also, the relationship between taxonomic and functional turnover was linear and positive. Our results indicated that functional traits were complementary across the chronosequence. The increase in FD was mainly driven by the addition of rare species with relevant traits. The older secondary forests did not recover all of the functions of old growth forest but did show a tendency to recovery. Because older successional stages support more TD and FD, we suggest developing agriculture and forestry management practices that facilitate rapid post‐agricultural succession and thereby better preserve the functionality of tropical forests. 相似文献
10.
Patterns of taxonomic and functional diversity of termites along a tropical elevational gradient 下载免费PDF全文
Cássio A. Nunes André V. Quintino Reginaldo Constantino Daniel Negreiros Ronaldo Reis Júnior Geraldo Wilson Fernandes 《Biotropica》2017,49(2):186-194
Patterns of termite richness along elevation gradients may be related to different responses by termite functional groups to changes in environmental conditions. We investigated the distribution of termite species richness along an elevational gradient of cerrado and rupestrian grasslands in the Espinhaço Mountain Range, in Brazil. Fifty termite species were recorded, with the family Termitidae being dominant; 16 species are endemic to open areas of cerrado and 1 species, Cortaritermes rizzinii, is endemic and restricted to mountaintop grassland habitats. Termite richness declined with increasing elevation, with the main factors associated with the reduction being climactic (air temperature, air and soil humidity, and radiation) and vegetation variables. Different termite communities were found along the elevational gradient, which were also strongly influenced by changes in climate and vegetation. On the other hand, the same functional groups were present at the different elevations, although represented by different species. 相似文献
11.
Urbanization is a major land use form that has large impacts on ecosystems. Urban development in the watershed impacts stream ecosystems by increasing nutrient and organic matter loads, altering hydrology, and reducing biodiversity. Puerto Rico is an ideal location to assess and monitor the effects of urbanization on streams, because it is increasingly urbanized and streams do not receive inputs of untreated sewage, characteristic of many other tropical urban areas. The objective of this study was to determine how leaf litter decomposition and aquatic macroinvertebrate assemblages varied along a tropical urban gradient. We conducted the study in the Río Piedras watershed, San Juan Metropolitan Area, in six low‐order streams that formed an urban gradient ranging from 10% to 70% urban land cover. At each stream, we placed six 5 g leaf bags of Ficus longifolia in three different pools and collected one bag on each sampling date. Decomposition rates were fast in forested streams (range 0.021–0.039/day) and decreased with increasing urbanization (range 0.007–0.008/day). Rates were strongly and negatively correlated with percent impervious surface cover (R = 0.81, p = 0.01). Functional feeding group diversity was higher in forested streams, with the presence of shredders. Decomposition rates were significantly and positively correlated with functional feeding group diversity and abundance (R = 0.66, p = 0.04). Overall, our results show that urbanization affected the environment and macroinvertebrate diversity resulting in large negative effects on stream ecosystem function. Abstract in Spanish is available with online material. 相似文献
12.
Loïc Pellissier Charlotte Ndiribe Anne Dubuis Jean‐Nicolas Pradervand Nicolas Salamin Antoine Guisan Sergio Rasmann 《Ecology letters》2013,16(5):600-608
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. 相似文献
13.
14.
15.
16.
17.
植物叶功能性状与环境因子的关系是近10年来植物生态学的研究热点。该文以广泛分布于青藏高原干旱、半干旱草地的优势植物种紫花针茅(Stipa purpurea)为研究对象, 沿降水梯度(69-479 mm)系统测定了日土、改则、珠峰、当雄和纳木错5个调查地点紫花针茅比叶面积(SLA)、单位重量和单位面积叶氮含量(Nmass, Narea)、叶密度和厚度等叶功能性状以及土壤全氮含量等因子, 试图验证干旱胁迫地区同一物种内SLA-Nmass关系沿降水梯度的策略位移现象是否具有普遍性, 并对是否出现策略位移现象提出可能的解释。研究结果表明: 1) SLA和Nmass与生长季温度和降水以及土壤全氮含量均没有显著关系, SLA与Nmass的关系在干旱半干旱区(年降水/蒸发比< 0.11)与半湿润区(年降水/蒸发比> 0.11)之间并没有出现典型的位移现象; 2)叶密度是决定半湿润区SLA变化的主导因子, 而叶厚度则是干旱半干旱区SLA变化的控制因子, 两者与SLA均呈负相关, 随着温度增加或降水减少, 叶厚度增加而叶密度降低, 导致SLA随温度和降水变化不明显; 3)半湿润区的叶密度增加引起Narea增加, 而干旱半干旱区的叶厚度增加并没有造成Narea的显著变化, 导致Narea沿降水梯度没有显著变化; 4)紫花针茅地上生物量与Narea具有显著正相关关系, 表明Narea的增加有助于提高植被生产力。结果表明, 在干旱胁迫下, 植物通过增加叶厚度来维持不变的Narea可能有助于保持与较湿润地区相似的光合生产和水分利用效率。叶厚度和叶密度对比叶面积的相对影响在干旱半干旱区与半湿润区之间发生转变, 这为进一步检测高寒草地植被的水分限制阈值提供了新思路。 相似文献
18.
Hao Wang Hui Fu Zihao Wen Changbo Yuan Xiaolin Zhang Leyi Ni Te Cao 《Ecology and evolution》2021,11(14):9827
Spatiotemporal variation in community composition is of considerable interest in ecology. However, few studies have focused on seasonal variation patterns in taxonomic and functional community composition at the fine scale. As such, we conducted seasonal high‐density sampling of the submerged macrophyte community in Hongshan Bay of Erhai Lake in China and used the generalized dissimilarity model (GDM) to evaluate the effects of environmental factors and geographic distance on taxonomic and functional beta diversity as well as corresponding turnover and nestedness components. At the fine scale, taxonomic turnover and nestedness as well as functional turnover and nestedness showed comparable contributions to corresponding taxonomic and functional beta diversity, with different importance across seasons. All taxonomic and functional dissimilarity metrics showed seasonal variation. Of note, taxonomic beta diversity was highest in summer and lowest in winter, while functional beta diversity showed the opposite pattern. Taxonomic and functional turnover showed similar change patterns as taxonomic and functional beta diversity. Taxonomic nestedness was low in summer and high in winter. Functional nestedness was also lower in summer. These results suggest that under extreme environmental conditions, both turnover and nestedness can exist at the fine scale and seasonal community composition patterns in submerged macrophytes should be considered. Future investigations on community assembly mechanisms should pay greater attention to long‐term dynamic characteristics and functional information. 相似文献
19.
M. Claire Horner-Devine Mathew A. Leibold Val H. Smith Brendan J. M. Bohannan 《Ecology letters》2003,6(7):613-622
Primary productivity is a key determinant of biodiversity patterns in plants and animals but has not previously been shown to affect bacterial diversity. We examined the relationship between productivity and bacterial richness in aquatic mesocosms designed to mimic small ponds. We observed that productivity could influence the composition and richness of bacterial communities. We showed that, even within the same system, different bacterial taxonomic groups could exhibit different responses to changes in productivity. The richness of members of the Cytophaga‐Flavobacteria‐Bacteroides group exhibited a significant hump‐shaped relationship with productivity, as is often observed for plant and animal richness in aquatic systems. In contrast, we observed a significant U‐shaped relationship between richness and productivity for α‐proteobacteria and no discernable relationship for β‐proteobacteria. We show, for the first time, that bacterial diversity varies along a gradient of primary productivity and thus make an important step towards understanding processes responsible for the maintenance of bacterial biodiversity. 相似文献