首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the field of plant–herbivore interactions, research methods where plant secondary metabolites are manipulated are becoming more and more popular. Among the most commonly used is tannic acid. However, recent studies have shown that different tannic acid preparations are not comparable in their tannin structures. While tannic acids are meant to contain only gallotannins (GTs), some commercial preparations compose mainly of more simple galloylglucoses (that have, e.g. much lower protein precipitation capacity than GTs) or even of gallic acid (the hydrolysis product of GTs). Another group of tannins used in feeding trials is condensed tannins (CTs), usually in the form of quebracho tannin. Quebracho, however, contains different CT structures than, e.g. leaves of many deciduous trees. Additionally, when analysed with the common acid-butanol assay for total CTs, quebracho tannins give even 30-fold lower absorbance than the CTs of those deciduous trees. In addition to above problems it has been shown that different tannins can give different response even within the same herbivore species, and that the same tannin structure can cause different response in different herbivores. Below we review these problems, as well as some means to deal with them.  相似文献   

2.
To understand the ways in which condensed tannins (CT) affect primate diet selection and nutritional status, correct measurements are essential. In the majority of studies of the CT contents of primate foods, a tannin source such as "quebracho" is used to standardize CT assays, but the CT in quebracho tannin may not be similar to those in the plants of interest. We investigated how the choice of standard to calibrate CT assays affects the estimation of CT in the diets of mountain gorillas (Gorilla beringei). We purified the CT from gorilla foods and compared the actual amounts of CT in the foods with estimates produced by using the quebracho tannin. When quebracho was used, the estimates of CT contents of gorilla foods were, on average, 3.6 times the actual content of CT so that the amounts in frequently eaten gorilla foods were substantially overestimated. The overestimation for a given plant could not be predicted reliably and the ranking of plants by tannin content differed according to the standard used. Our results demonstrate that accurate measurements of CT necessitate the use of tannins purified from the plant species of interest. A reevaluation of primatology studies using interspecific comparisons of tannin content will provide new insights into primate food selection and nutritional ecology.  相似文献   

3.
Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis.  相似文献   

4.
Ingestion of small amounts of some types of condensed tannins (CTs) by ruminant livestock can provide nutritional, environmental and economic benefits. However, practical methods are needed to make these tannins more available to ruminant livestock. Results from previous trials with crude quebracho and black wattle tannin indicated that cattle and/or sheep would not preferentially drink water containing these tannins. Therefore, we conducted preference trials to determine if cattle and sheep would learn to prefer water containing purified grape seed tannin (GST) that provided up to 2% of their daily dry matter (DM) intake. After gradual exposure to increasing amounts of this tannin in water during a pre-trial period, five adult ewes and five yearling heifers fed lucerne (Medicago sativa) pellets (19% CP) were offered water and several concentrations of GST solutions for either 15 (sheep trial) or 20 days (cattle trial). We measured intake of all liquids daily. Concentrations of blood urea were also measured for heifers when they drank only tannin solutions or water. Both sheep and cattle developed preferences for water with GST in it over water alone (P < 0.01) although this preference appeared earlier in the trial for sheep than for cattle. For the sheep, mean daily intake of water alone and all tannin solutions (in total) was 0.6 and 6.1 l, respectively. For the cattle, mean daily intake of water and all tannin solutions in total was 21.8 and 20.6 l, respectively, in the first half of the trial and 10.8 and 26.1 l, respectively, in the second half of the trial. Compared with the other tannin solutions, both sheep and cattle drank more of the solution with the highest tannin concentration (2% of daily DM intake as GST) than of water on more trial days (P < 0.05). Ingestion of water with the highest concentration of GST reduced blood plasma urea concentration in the cattle by 9% to 14% (P ⩽ 0.10) compared with ingestion of water alone. Results from the trials suggest that providing grape seed and perhaps other CTs via drinking water may be a practical way to introduce CTs into sheep and cattle diets.  相似文献   

5.
Abstract. 1. Community level oak–tannin–insect patterns have been largely unexplored since Paul Feeny's ground‐breaking research. Two hypotheses were tested for Quercus velutina and Q. alba in the Missouri Ozarks: abundance and richness of leaf‐chewing herbivores are negatively correlated with foliar condensed tannin concentrations and variation in condensed tannin concentrations explains variation in herbivore community structure. 2. In 2001, foliar condensed tannins in the understorey and canopy of these two oak species were quantified simultaneously with censuses of herbivores in May, during leaf expansion, and in June and August, when leaves were fully expanded. Thirty‐eight of the 134 species encountered had densities sufficient to be analysed individually (n = 10). Of those, Acronicta increta (Noctuidae) and Attelabus sp. (Curculionidae), both oak specialists, were negatively correlated with condensed tannins in the canopy of Q. alba. One additional specialist, Chionodes pereyra (Gelechiidae), was marginally negatively correlated with condensed tannins in the understorey of Q. velutina. Understorey species richness of May Q. velutina herbivores was negatively correlated with condensed tannins, as were total canopy insect density and species richness of August herbivores on Q. alba. 3. Principal component analysis (PCA) of insect abundances indicated that understorey and canopy Q. velutina and Q. alba had different communities of leaf‐chewing insects. Furthermore, condensed tannin levels contributed significantly to variation in PCA scores for Q. velutina, explaining 25% of the total variation. 4. Overall, these results indicate that specialists were more likely than generalists both to correlate negatively with condensed tannins and to occur in lower tannin habitats; abundance and richness of both early and late season fauna correlated negatively with tannins; and species were more likely to correlate negatively with condensed tannins when feeding on Q. alba than on Q. velutina and when feeding in the canopy than in the understorey. Future studies of tannin–insect interactions should manipulate leaf quality in combination with manipulations of other factors that likely influence community structure.  相似文献   

6.
The beneficial effects of forages containing condensed tannins (CTs) on ruminants are well documented, but the chemical features of CT that yield benefits have not been defined. Some evaluations of limited numbers of highly purified compounds have resulted in positive correlations between CT molecular weight (MW) and biological activity, while others have failed to show a correlation. The objectives of this study were to determine if MW of CT could predict biological activity relative to protein precipitability. MW of condensed tannin, protein-precipitable phenolics (PPP), and the amount of protein bound (PB) were determined for nine species of warm-season perennial legumes. There was no correlation between PPP or PB and MW (R2 0.11 and R2 0.02, respectively). However, CT concentration did correlate with PPP and PB (R2 0.81 and R2 0.69, respectively). It was concluded that CT MW does not explain the variation in protein precipitation by CT from the forage legumes surveyed.  相似文献   

7.
S. Mole  P. G. Waterman 《Oecologia》1987,72(1):137-147
Summary A series of seventeen plant extracts rich in phenolic materials, including condensed and hydrolysable tannins, have been subjected to a series of chemical analyses in an attempt to gather ecologically significant information about their structure. Procedures investigated were (i) the Folin-Denis and Hagerman and Butler methods for quantifying total phenolics, (ii) the vanillin and proanthocyanidin methods for quantifying condensed tannins, (iii) the iodate and nitrous acid methods for hydrolysable tannins. It was found that the techniques for total phenolics correlated well, the Hagerman and Butler method giving higher estimates where solutions were particularly phenol rich. By contrast there was considerable discrepancy between the methods examined for condensed tannins. This is probably due primarily to the very different chemical reactions that form the basis of these procedures and also to the fact that the extract dependent products of the proanthocyanidin method vary in their A 1 1 values. During the study of condensed tannins methods for estimating their contribution to total phenolics and for measuring their average polymer length were examined. In both cases different procedures produced very variable results. Available methods for hydrolysable tannins were found not to be generally applicable across all extracts thought to contain this type of tannin on the basis of chromatographic analysis. An attempt to produce a quantitative spectrophotometric assay for hydrolysable tannins based on changes in reactivity to ferric chloride due to hydrolysis is described. This proved to be of limited sensitivity but may have some merit for estimating levels in hydrolysable tannins in phenol-rich plant extracts that also contain condensed tannins. It is concluded that whilst the overall level of phenolics in extracts can be estimated with some confidence the information imparted by more specific assays is very dependent on the procedures employed, particularly when dealing with extracts from taxonomically highly diverse sources.  相似文献   

8.
《Process Biochemistry》2010,45(7):1072-1081
Grafting natural antibacterial phenols onto lignocellulosic materials is an environmentally friendly way of imparting antibacterial properties to the substrates. In the present investigation, wood veneer and pulp were treated with tannins in the presence or absence of laccase. Treatments with hydrolysable tannins significantly improved the antibacterial resistance of veneers and paper made from tannin-treated pulp against a Gram-positive bacterium (Staphylococcus aureus) while a more modest protective effect was observed against a Gram-negative bacterium (Escherichia coli). Condensed tannin improved the antibacterial resistance against S. aureus, albeit less than hydrolysable tannin, but had little effect on E. coli. A cationic condensed tannin derivative bearing a quaternary amino group provided far better resistance to pulp against S. aureus and E. coli than the corresponding unmodified condensed tannin. These findings agree with the minimal inhibitory concentrations (MICs) of the tannins and their reactivities toward laccase as determined by O2 consumption measurements. Due to a better retention of tannins via covalent bonding, treatments with laccase usually resulted in greater antibacterial effects than those without laccase. LC–MS investigations with monomeric tannin and lignin model compounds showed that covalent bonding of tannin to lignin via radical coupling occurred in the presence of laccase.  相似文献   

9.
Phytochemical coevolution theory posits that specialist herbivores will be less sensitive than generalists to the defensive compounds of their host. On the other hand, both types of herbivores should allegedly be similarly sensitive to ‘quantitative’ defences, such as tannin compounds. In this paper, we critically examine the biological effects of two types of tannins: vescalagin (a quantitatively dominant hydrolysable tannin of Quercus robur), and a mix of condensed tannins. In a phylogenetically controlled design, we compare the response of two specialist moth species (Dichonia aprilina and Catocala sponsa) and two generalist species (Acronicta psi and Amphipyra pyramidea) to four artificial diets: a control diet, a diet with 50 mg g?1 vescalagin, a diet with 15 mg/g condensed tannins, and a diet with both 50 mg g?1 vescalagin and 15 mg g?1 condensed tannins. Overall, we find drastic effects of vescalagin and pronounced differences in the responses of generalist and specialist herbivores, but no detectable effects of condensed tannins, and no interaction between the two types of compounds. More specifically, vescalagin reduced the growth of generalist species to one‐half of control levels over 72 h. The compound served as a strong feeding deterrent to generalists, reducing ingestion rates by two‐thirds. Vescalagin also reduced the metabolic and growth efficiency of generalist species to between 16% and 56% of control levels – effects which were lacking or even reversed in specialist species. These patterns suggest that vescalagin forms an important part of the oak's defence against herbivores, and that specialist species have adapted to deal with such substances. In terms of biological effects, condensed tannins seem much less important. Given a quantitative dominance of hydrolysable tannins over condensed tannins in oak leaves, and a seasonal decline in overall tannin levels, these findings contradict the previous notion that widespread spring feeding among oak herbivores could be attributed to tannins.  相似文献   

10.
The ability of foliar tannins to increase plant resistance to herbivores is potentially determined by the composition of the tannins; hydrolyzable tannins are much more active as prooxidants in the guts of caterpillars than are condensed tannins. By manipulating the tannin compositions of two contrasting tree species, this work examined: (1) whether increased levels of hydrolyzable tannins increase the resistance of red oak (Quercus rubra L.), a tree with low resistance that produces mainly condensed tannins, and (2) whether increased levels of condensed tannins decrease the resistance of sugar maple (Acer saccharum Marsh.), a tree with relatively high resistance that produces high levels of hydrolyzable tannins. As expected, when Lymantria dispar L. caterpillars ingested oak leaves coated with hydrolyzable tannins, levels of hydrolyzable tannin oxidation increased in their midgut contents. However, increased tannin oxidation had no significant impact on oxidative stress in the surrounding midgut tissues. Although growth efficiencies were decreased by hydrolyzable tannins, growth rates remained unchanged, suggesting that additional hydrolyzable tannins are not sufficient to increase the resistance of oak. In larvae on condensed tannin-coated maple, no antioxidant effects were observed in the midgut, and levels of tannin oxidation remained high. Consequently, neither oxidative stress in midgut tissues nor larval performance were significantly affected by high levels of condensed tannins. Post hoc comparisons of physiological mechanisms related to tree resistance revealed that maple produced not only higher levels of oxidative stress in the midgut lumen and midgut tissues of L. dispar, but also decreased protein utilization efficiency compared with oak. Our results suggest that high levels of hydrolyzable tannins are important for producing oxidative stress, but increased tree resistance to caterpillars may require additional factors, such as those that produce nutritional stress.  相似文献   

11.
Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype’s baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a higher plasticity to nitrogen addition, and potentially an advantage when adapting to higher concentrations of soil nitrogen.  相似文献   

12.
Tannins are plant-derived polyphenols with antimicrobial effects. The mechanism of tannin toxicity towards Escherichia coli was determined by using an extract from Acacia mearnsii (Black wattle) as a source of condensed tannins (proanthocyanidins). E. coli growth was inhibited by tannins only when tannins were exposed to oxygen. Tannins auto-oxidize, and substantial hydrogen peroxide was generated when they were added to aerobic media. The addition of exogenous catalase permitted growth in tannin medium. E. coli mutants that lacked HPI, the major catalase, were especially sensitive to tannins, while oxyR mutants that constitutively overexpress antioxidant enzymes were resistant. A tannin-resistant mutant was isolated in which a promoter-region point mutation increased the level of HPI by 10-fold. Our results indicate that wattle condensed tannins are toxic to E. coli in aerobic medium primarily because they generate H2O2. The oxidative stress response helps E. coli strains to overcome their inhibitory effect.  相似文献   

13.
Summary We investigated seasonal changes in food selection by hand-reared kudus and impalas in savanna vegetation in northern Transvaal, South Africa. The acceptability of the leaves of woody plants to these animals was compared with leaf concentrations of nutrients, fibre components and old leaf phenophases. No consistently significant correlation was found between acceptability and any single chemical factor. Based on an a priori palatability classification, discriminant function analysis separated relatively palatable species from unpalatable species in terms of a linear combination of protein and condensed tannin concentrations. The high acceptability of certain otherwise unpalatable species during the new leaf phenophase was related to elevation of protein levels relative to condensed tannin contents. Species were added to the diet during the dry season approximately in the order of their relative protein-condensed tannin difference.  相似文献   

14.
Warmer temperatures associated with climate change have the potential to accelerate litter decay and subsequently release large amounts of carbon stored in soils. Condensed tannins are widespread secondary metabolites, which accumulate to high concentrations in many woody plants and play key roles in forest soil nutrient cycles. Future elevated atmospheric CO2 concentrations are predicted to reduce nitrogen content and increase tannin concentrations in plant tissues, thus reducing litter quality for microbial communities and slowing decomposition rates. How the distinct condensed tannin fractions (water-soluble, acetone:MeOH-soluble and solvent-insoluble) impact soil processes, has not been investigated. We tested the impact of condensed tannin and nitrogen concentrations on decay rates of poplar and Douglas-fir litter at sites spanning temperature and moisture gradients in coastal rainshadow forests in British Columbia, Canada. The three condensed tannin fractions were quantified using recent improvements on the butanol-HCl assay. Decay was assessed based on carbon remaining, while changes in litter chemistry were primarily observed using two methods for proximate chemical analyses. After 0.6 and 1 year of decay, more carbon remained in poplar litter with high, compared to low, condensed tannin concentrations. By contrast, more carbon remained in Douglas fir litter than poplar litter during this period, despite lower condensed tannin concentrations. Rapid early decay was especially attributed to loss of soluble compounds, including water-soluble condensed tannins. Water-insoluble condensed tannin fractions, which were transformed to acid-unhydrolyzable residues over time, were associated with reduced carbon loss in high condensed tannin litter.  相似文献   

15.
The effect of dietary condensed tannins (proanthocyanidins) on rat fecal bacterial populations was ascertained in order to determine whether the proportion on tannin-resistant bacteria increased and if there was a change in the predominant bacterial populations. After 3 weeks of tannin diets the proportion of tannin-resistant bacteria increased significantly (P < 0.05) from 0.3% ± 5.5% to 25.3% ± 8.3% with a 0.7% tannin diet and to 47.2% ± 5.1% with a 2% tannin diet. The proportion of tannin-resistant bacteria returned to preexposure levels in the absence of dietary tannins. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations by denaturing gradient gel electrophoresis (DGGE). Posttreatment samples were generally still distinguishable from controls after 3.5 weeks. Sequence analysis of DGGE bands and characterization of tannin-resistant isolates indicated that tannins selected for Enterobacteriaceae and Bacteroides species. Dot blot quantification confirmed that these gram-negative bacterial groups predominated in the presence of dietary tannins and that there was a corresponding decrease in the gram-positive Clostridium leptum group and other groups. Metabolic fingerprint patterns revealed that functional activities of culturable fecal bacteria were affected by the presence of tannins. Condensed tannins of Acacia angustissima altered fecal bacterial populations in the rat gastrointestinal tract, resulting in a shift in the predominant bacteria towards tannin-resistant gram-negative Enterobacteriaceae and Bacteroides species.  相似文献   

16.
The percentage of tannins in leaves, bark, wood, and immature fruits of several species of Acacia and related mimosoid legumes from the southwestern U.S. and Mexico, along with a few from Costa Rica and Argentina, was determined by a modified hide powder procedure and by precipitation with casein. The relative percentages of hydrolyzable and condensed tannins were determined by the iodate and the vanillin-HCl methods, respectively. Gallotannins of selected samples were also determined by the rhodanine method. Although the amount of total tannins was similar for the first two methods, values for condensed tannins by the vanillin-HCl method were frequently two to four times greater than the total tannin values.  相似文献   

17.
Summary Estimations of condensed tannin content are generally based on calibration standard curves from Quebracho condensed tannins. We generated calibration standard curves from eight Sonoran Desert species for comparison with estimates of tannin concentrations derived from the Quebracho standard curve. Estimates of leaf tannin concentrations of each of the eight species using each species standard curve differed significantly with the estimates given by the Quebracho standard curve. Standard curves constructed from tannins from different individuals of three of the species varied significantly between, but not within, species. The efficiency of precipitation of protein bovine serum albumin (BSA) by each different tannin varied up to a factor of fifty for tannins of different species. Ordering species from highest to lowest based on tannin concentrations or binding efficiencies gave two different ranks. We argue that concentration or efficiency alone do not describe adequately tannin ecological activity. Instead, we suggest combining tannin concentrations and binding efficiencies to measure the protein precipitating potential of a leaf. Leaf protein precipitating potential is a more ecologically realistic parameter, we feel, for between-species comparisons than tannin content or binding efficiencies alone.Operated for the U.S. Department of Energy by the University of California under Contract No. DE-AC03-76-SF00012. This article was supported by the Director of the Office of Energy Research, Office of Health and Environmental Research  相似文献   

18.
Relationships between chemical constituents, including values obtained with tannin assays (i.e., total phenols, total tannins, condensed tannins and tannin activity using a tannin bioassay) for plant materials (n = 17), and methane production parameters at 24 h of incubation in the in vitro Hohenheim gas method were established. The methane production reduction potential (MRP) was calculated by assuming net methane concentration for the control hay as 100%. The MRP of Bergenia crassifolia leaves and roots, and Peltiphyllum peltatum leaves, was >40%. Amongst the chemical constituents, neutral detergent fibre had a high correlation (r = 0.86) with methane concentration. There was negative relationship between total phenol, total tannins or tannin activity and methane concentration. However, a positive relationship existed between these tannin assays and the MRP, with r-values ranging from 0.54 to 0.79 (P<0.05). A very weak relationship (r = 0.09) occurred between condensed tannins and MRP. Similar results to those with MRP were obtained with the percent increase in methane on addition of polyethylene glycol. The highest correlations, 0.79 and 0.92 (P<0.001), were between tannin activity determined using the tannin bioassay and the MRP, or the percent increase in methane on addition of polyethylene glycol, respectively, suggesting that this tannin assay could be used to identify plants possessing antimethanogenic properties. Leaves of Rheum undulatum, Vaccinium vitis-idaea, B. crassifolia, Rhus typhina and P. peltatum, and roots of B. crassifolia have considerable potential (i.e., >25%) to decrease enteric methane production from ruminants.  相似文献   

19.
Summary The concept of protein precipitation potential has recently been introduced by Wisdom et al. (1987) as a means to combine chemical and protein precipitation assays of tannins for ecological studies. The definition of protein precipitation potential was not theoretically rigorous, and data analysis was obscure. Our attempts to repeat the tannin extraction procedure gave incomplete recovery (24% loss of quebracho) of condensed tannins, the only type considered by Wisdom et al. In contrast we found their method efficient for hydrolysable tannins (80% recovery of tannic acid) which were undetected by their chemical assay of tannins. Their protein precipitation assay was confounded by chemical interference from both types of tannins. We conclude with recommendations for this type of analysis.  相似文献   

20.
棉花植株中的单宁测定方法研究   总被引:27,自引:0,他引:27  
通过 3种方法测定棉花组织中单宁含量比较表明,Folin酚还原法测定的 4个品种不同组织和不同生育期顶叶的含量显著高于正丁醇盐酸法 (即花色素反应,专门用于缩合单宁的测定)近 2倍,说明这种方法测定出的是相对总酚含量,用于表达棉花缩合单宁的含量是不合适的,而香草醛法测定结果与正丁醇盐酸法差异不显著,可用于棉花组织单宁含量的测定.在棉花各个组织中,花萼、铃皮和叶片缩合单宁含量较高,陆地棉中一般达 5%~10%;花瓣、花柱子房和铃心中含量较低 (2%左右).顶端嫩叶缩合单宁含量从苗期 (1%以下)起不断增加,至吐絮期达最高 (10%左右),表明缩合单宁含量与植物组织成熟衰老和木质化程度密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号