首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A statistical analysis was performed on the results obtained in titrations of yellow fever vaccine using a cytopathic end-point microassay in the Vero cell line. The present test system appeared less sensitive than the conventional plaque assay in PS cells but the consistency in titres was satisfactory since both test-to-test and within-test variations were small. In addition, the test is easy to perform, economical and fast.  相似文献   

2.
3.
A hamster viscerotropic strain of yellow fever (YF) virus has been derived after serial passage of strain Asibi through hamsters. The parental Asibi/hamster p0 virus causes a mild and transient viremia in hamsters with no outward, clinical signs of illness. In contrast, the viscerotropic Asibi/hamster p7 virus causes a robust viremia, severe illness, and death in subadult hamsters. The genome of the hamster viscerotropic Asibi/hamster p7 virus has been sequenced and compared with the parental nonviscerotropic Asibi/hamster p0 virus identifying 14 nucleotide changes encoding only seven amino acid substitutions. The majority of these substitutions (five of seven) fall within the envelope (E) protein at positions Q27H, D28G, D155A, K323R, and K331R. These results support an important role for the E protein in determining YF virus viscerotropism.  相似文献   

4.
Binding of yellow fever virus wild-type strains Asibi and French viscerotropic virus and vaccine strains 17D and FNV to monkey brain and monkey liver cell membrane receptor preparations (MRPs) was investigated. Only FNV bound to monkey brain MRPs, while French viscerotropic virus, Asibi, and FNV all bound to monkey liver MRPs. Four monkey brain and two mouse brain MRP escape (MRP(R)) variants of FNV were selected at pH 7.6 and 6.0. Three monkey brain MRP(R) variants selected at pH 7.6 each had only one amino acid substitution in the envelope (E) protein in domain II (E-237, E-260, or E274) and were significantly attenuated in mice following intracerebral inoculation. Two of the variants were tested in monkeys and retained parental neurotropism following intracerebral inoculation at the dose tested. We speculate that this region of domain II is involved in binding of FNV E protein to monkey brain and is, in part, responsible for the enhanced neurotropism of FNV for monkeys. A monkey brain MRP(R) variant selected at pH 6.0 and two mouse brain MRP(R) variants selected at pH 7.6 were less attenuated in mice, and each had an amino acid substitution in the transmembrane region of the E protein (E-457 or E-458).  相似文献   

5.
Lee E  Lobigs M 《Journal of virology》2008,82(12):6024-6033
The yellow fever virus (YFV) 17D strain is one of the most effective live vaccines for human use, but the in vivo mechanisms for virulence attenuation of the vaccine and the corresponding molecular determinants remain elusive. The vaccine differs phenotypically from wild-type YFV by the loss of viscerotropism, despite replicative fitness in cell culture, and genetically by 20 amino acid changes predominantly located in the envelope (E) protein. We show that three residues in E protein domain III inhibit spread of 17D in extraneural tissues and attenuate virulence in type I/II interferon-deficient mice. One of these residues (Arg380) is a dominant glycosaminoglycan-binding determinant, which mainly accounts for more rapid in vivo clearance of 17D from the bloodstream in comparison to 17D-derived variants with wild-type-like E protein. While other mutations will account for loss of neurotropism and phenotypic stability, the described impact of E protein domain III changes on virus dissemination and virulence is the first rational explanation for the safety of the 17D vaccine in humans.  相似文献   

6.
7.
T Grange  M Bouloy  M Girard 《FEBS letters》1985,188(1):159-163
The sequence of the 3'-terminal 565 nucleotides of yellow fever virus has been determined from a cloned cDNA. Several structures are detectable: three tandemly repeated sequences, a series of inverted repeats and a stable secondary structure involving the 3'-terminal 120 nucleotides.  相似文献   

8.
ChimeriVax-JE is a live, attenuated recombinant virus prepared by replacing the genes encoding two structural proteins (prM and E) of yellow fever 17D virus with the corresponding genes of an attenuated strain of Japanese encephalitis virus (JE), SA14-14-2 (T. J. Chambers et al., J. Virol. 73:3095-3101, 1999). Since the prM and E proteins contain antigens conferring protective humoral and cellular immunity, the immune response to vaccination is directed principally at JE. The prM-E genome sequence of the ChimeriVax-JE in diploid fetal rhesus lung cells (FRhL, a substrate acceptable for human vaccines) was identical to that of JE SA14-14-2 vaccine and differed from sequences of virulent wild-type strains (SA14 and Nakayama) at six amino acid residues in the envelope gene (E107, E138, E176, E279, E315, and E439). ChimeriVax-JE was fully attenuated for weaned mice inoculated by the intracerebral (i.c.) route, whereas commercial yellow fever 17D vaccine (YF-Vax) caused lethal encephalitis with a 50% lethal dose of 1.67 log(10) PFU. Groups of four rhesus monkeys were inoculated by the subcutaneous route with 2.0, 3.0, 4.0, and 5. 0 log(10) PFU of ChimeriVax-JE. All 16 monkeys developed low viremias (mean peak viremia, 1.7 to 2.1 log(10) PFU/ml; mean duration, 1.8 to 2.3 days). Neutralizing antibodies appeared between days 6 and 10; by day 30, neutralizing antibody responses were similar across dose groups. Neutralizing antibody titers to the homologous (vaccine) strain were higher than to the heterologous wild-type JE strains. All immunized monkeys and sham-immunized controls were challenged i.c. on day 54 with 5.2 log(10) PFU of wild-type JE. None of the immunized monkeys developed viremia or illness and had mild residual brain lesions, whereas controls developed viremia, clinical encephalitis, and severe histopathologic lesions. Immunized monkeys developed significant (>/=4-fold) increases in serum and cerebrospinal fluid neutralizing antibodies after i.c. challenge. In a standardized test for neurovirulence, ChimeriVax-JE and YF-Vax were compared in groups of 10 monkeys inoculated i.c. and analyzed histopathologically on day 30. Lesion scores in brains and spinal cord were significantly higher for monkeys inoculated with YF-Vax. ChimeriVax-JE meets preclinical safety and efficacy requirements for a human vaccine; it appears safer than yellow fever 17D vaccine but has a similar profile of immunogenicity and protective efficacy.  相似文献   

9.
The oral susceptibility to yellow fever virus was evaluated in 23 Aedes aegypti samples from Brazil. Six Ae. aegypti samples from Africa, America and Asia were also tested for comparison. Mosquito samples from Asia showed the highest infection rates. Infection rates for the Brazilian Ae. aegypti reached 48.6%, but were under 13% in 60% of sample tested. We concluded that although the low infection rates estimated for some Brazilian mosquito samples may not favor the establishment of urban cycle of yellow fever in some parts of the country, the founding of Ae. aegypti of noteworthy susceptibility to the virus in cities located in endemic and transition areas of sylvatic yellow fever, do pose a threat of the re-emergence of the urban transmission of the disease in Brazil.  相似文献   

10.
We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.  相似文献   

11.
Yellow fever vaccines are routinely assayed by plaque assay. However, the results of these assays are then converted into mouse LD(50) using correlations/conversion factors which, in many cases, were established many years ago. The minimum required potency in WHO Recommendations is 10(3) LD(50)/dose. Thirteen participants from 8 countries participated in a collaborative study whose aim was to assess the suitability of two candidate preparations to serve as an International Standard for yellow fever vaccine. In addition, the study investigated the relationship between the mouse LD(50) test and plaque forming units with a view to updating the WHO recommendations. Plaque assays were more reproducible than mouse assays, as expected. Differences in sensitivities of plaque assays were observed between laboratories but these differences appear to be consistent within a laboratory for all samples and the expression of potency relative to the candidate standard vaccine improved the reproducibility of assays between laboratories. However, the use of potencies had little effect on the between laboratory variability in mouse LD(50) assays. There appears to be a consistent relationship between overall mean LD(50) and plaques titre for all study preparations other than sample E. The slope of the correlation curve is >1 and it would appear that 10(3) LD(50) is approximately equivalent to 10(4) plaque forming units (PFU), based on the overall means of all laboratory results. The First International Standard for yellow fever vaccine, NIBSC Code 99/616, has been established as the First International Standard for yellow fever vaccine by the Expert Committee of Biological Standards of the World Health Organisation. The International Standard has been arbitrarily assigned a potency of 10(4.5) International Units (IU) per ampoule. Manufacturers and National Control Laboratories are including the First International Standard for yellow fever vaccine in routine assays so that the minimum potency in IU of vaccines released for use and which meet the current minimum potency of 10(3) LD(50) in mouse assays, can be determined. These data will be analysed before a review of the WHO requirements, including the minimum potency per dose, is undertaken.  相似文献   

12.
13.
The yellow fever 17D virus (YF17D) has several characteristics that are desirable for the development of new, live attenuated vaccines. We approached its development as a vector for heterologous antigens by studying the expression of a humoral epitope at the surface of the E protein based on the results of modelling its three-dimensional structure. This model indicated that the most promising insertion site is between beta-strands f and g, a site that is exposed at the external surface of the virus. The large deletion of six residues from the fg loop of the E protein from yellow fever virus, compared to tick-born encephalitis virus, leaves space at the dimer interface for a large insertion without creating steric hindrance. We have tested this hypothesis by inserting a model humoral epitope from the circumsporozoite protein of Plasmodium falciparum consisting of triple NANP repeats. Recombinant virus (17D/8) expressing this insertion flanked by two glycine residues at each end, is specifically neutralized by a monoclonal antibody to the model epitope. Furthermore, mouse antibodies raised to the recombinant virus recognize the parasite protein in an ELISA assay. Serial passage analysis confirmed the genetic stability of the insertion made in the viral genome and the resulting 17D/8 virus is significantly more attenuated in mouse neurovirulence tests than the 17DD vaccine. The fg loop belongs to the dimerization domain of the E protein and lies at the interface between monomers. This domain undergoes a low pH transition, which is related to the fusion of the viral envelope to the endosome membrane. It is conceivable that a slower rate of fusion, resulting from the insertion close to the dimer interface, may delay the onset of virus production and thereby lead to a milder infection of the host. This would account for the more attenuated phenotype of the recombinant virus in the mouse model and lower extent of replication in cultured cells. The vectorial capacity of the yellow fever virus is being further explored for the expression and presentation of other epitopes, including those mediating T-cell responses.  相似文献   

14.
An attenuated strain of Akabane virus: a candidate for live virus vaccine   总被引:2,自引:0,他引:2  
An attempt was made to attenuate the high virulent OBE-1 strain of Akabane virus by adaptation to low temperature. In it the virus was subjected to passage through HmLu-1 cell cultures at 30 degrees C. Cloning was carried out on the virus which had undergone 20 passages through these cultures to select a strain adapted to low temperature. Finally, ten clones were obtained. As a result, nine strains of clone in which virus replication was poor in HmLu-1 cell cultures at 40 degrees C were obtained. Of them, five strains of clone produced uniform plaques. Of these strains, one, or the TS-C2 strain, was selected. It was considerably lower both in peripheral infectivity to suckling mice and in intracerebral infectivity to 3-week-old mice than the OBE-1 strain. Calves and pregnant cows inoculated with the TS-C2 strain by the intracerebral, intravenous, or subcutaneous route were free from pyrexia, leukopenia, and viremia. Virus recovery was negative from various organs and fetuses. All the animals inoculated, however, were found to have neutralizing antibody produced. The results mentioned above suggested that the TS-C2 strain might have been so attenuated as to be available as a candidate strain for a live virus vaccine.  相似文献   

15.
A yellow fever virus (YFV)/Japanese encephalitis virus (JEV) chimera in which the structural proteins prM and E of YFV 17D are replaced with those of the JEV SA14-14-2 vaccine strain is under evaluation as a candidate vaccine against Japanese encephalitis. The chimera (YFV/JEV SA14-14-2, or ChimeriVax-JE) is less neurovirulent than is YFV 17D vaccine in mouse and nonhuman primate models (F. Guirakhoo et al., Virology 257:363-372, 1999; T. P. Monath et al., Vaccine 17:1869-1882, 1999). Attenuation depends on the presence of the JEV SA14-14-2 E protein, as shown by the high neurovirulence of an analogous YFV/JEV Nakayama chimera derived from the wild JEV Nakayama strain (T. J. Chambers, A. Nestorowicz, P. W. Mason, and C. M. Rice, J. Virol. 73:3095-3101, 1999). Ten amino acid differences exist between the E proteins of ChimeriVax-JE and the YFV/JEV Nakayama virus, four of which are predicted to be neurovirulence determinants based on various sequence comparisons. To identify residues that are involved in attenuation, a series of intratypic YFV/JEV chimeras containing either single or multiple amino acid substitutions were engineered and tested for mouse neurovirulence. Reversions in at least three distinct clusters were required to restore the neurovirulence typical of the YFV/JEV Nakayama virus. Different combinations of cluster-specific reversions could confer neurovirulence; however, residue 138 of the E protein (E(138)) exhibited a dominant effect. No single amino acid reversion produced a phenotype significantly different from that of the ChimeriVax-JE parent. Together with the known genetic stability of the virus during prolonged cell culture and mouse brain passage, these findings support the candidacy of this experimental vaccine as a novel live-attenuated viral vaccine against Japanese encephalitis.  相似文献   

16.
Over the last 17 years, the yellow fever (YF) 17DD vaccine secondary seed lot 102/84 was used to produce many million doses of vaccine but it was recently used up. In the absence of other lots at the same passage level a large vaccine batch produced from 102/84 was turned into a new working seed. This new seed was characterized with regard to attenuation in the recommended internationally accepted monkey neurovirulence test (MNVT) using the 102/84 virus as reference. All rhesus monkeys (Macaca mulatta) developed limited viremia and comparable neutralizing antibody titers. Clinical evaluation and histological examination of the central nervous system (CNS) according to WHO criteria for acceptability gave consistent data that demonstrated an attenuated phenotype for the YF 17DD 993FB013Z (13Z) vaccine batch. It is concluded that the additional chicken embryo passage did not lead to any genetic change and the new working seed virus retained its attenuation for monkeys comparable to the 102/84 reference virus.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号