首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine A(2A) receptors (A2ARs) are thought to interact negatively with the dopamine D(2) receptor (D2R), so selective A2AR antagonists have attracted attention as novel treatments for Parkinson's disease (PD). However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-na?ve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET) with [7-methyl-(11)C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([(11)C]TMSX) in nine drug-na?ve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-na?ve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test). In the drug-na?ve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test). In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-na?ve patients (p<0.05, paired t-test) but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-na?ve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an important role in regulation of parkinsonism in PD.  相似文献   

2.
Radiosynthesis of [N-methyl-(11)C](S)-N-([1,1'-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide ([(11)C]BBAC or [(11)C]3) and [N-methyl-(11)C] (S)-N-([1,1'-biphenyl]-2-yl)-1-(3-(1-methyl-1H-benzo[d]imidazol-2-yl)propanoyl)pyrrolidine-2-carboxamide ([(11)C]BBPC or [(11)C]-4), two potential PET tracers for orexin2 receptors are described. Syntheses of non-radioactive standards 3, 4 and corresponding desmethyl precursors 1, 2 were achieved from common intermediate (S)-2-([1,1'-biphenyl]-2-yl)-1-(pyrrolidin-2-yl)ethanone. Methylation using [(11)C]CH(3)OTf in the presence of base in acetone afforded [(11)C]3 and [(11)C]4 in 30±5% yield (EOS) with >99 % radiochemical purities with a specific activity ranged from 2.5±0.5 Ci/μmol (EOB). The logP of [(11)C]3 and [(11)C]4 were determined as 3.4 and 2.8, respectively. The total synthesis time was 30 min from EOB. However, PET scans performed in a rhesus monkey did not show tracer retention or appropriate brain uptake. Hence [(11)C]3 and [(11)C]4 cannot be used as PET tracers for imaging orexin2 receptors.  相似文献   

3.
Synthesis of [(11)C]celecoxib, a selective COX-2 inhibitor, and [(11)C]SC-62807, a major metabolite of celecoxib, were achieved and the potential of these PET probes for assessing the function of drug transporter in biliary excretion was evaluated. The synthesis of [(11)C]celecoxib was achieved in one-pot by reacting [(11)C]methyl iodide with an excess of the corresponding pinacol borate precursor using Pd(2)(dba)(3), P(o-tolyl)(3), and K(2)CO(3) (1:4:9) in DMF. The radiochemical yield of [(11)C]celecoxib was 63±23% (decay-corrected, based on [(11)C]CH(3)I) (n=7) with a specific radioactivity of 83±23GBq/μmol (n=7). The average time of synthesis from end of bombardment including formulation was 30min with >99% radiochemical purity. [(11)C]SC-62807 was synthesized from [(11)C]celecoxib by further rapid oxidation in the presence of excess KMnO(4) with microwave irradiation. The radiochemical yield of [(11)C]SC-62807 was 55±9% (n=3) (decay-corrected, based on [(11)C]celecoxib) with a specific radioactivity of 39±4GBq/μmol (n=3). The average time of synthesis from [(11)C]celecoxib including formulation was 20min and the radiochemical purity was >99%. PET studies in rats and the metabolite analyzes of [(11)C]celecoxib and [(11)C]SC-62807 showed largely different excretion processes, and consequently, [(11)C]SC-62807 was rapidly excreted via hepatobiliary excretion without further metabolism. [(11)C]SC-62807 was shown to have a high potential as a PET probe for evaluating drug transporter function in biliary excretion.  相似文献   

4.
Abstract: The psychostimulant drug of abuse, cocaine (benzoylecgonine methyl ester), is rapidly metabolized by cleavage of its two ester groups, to give benzoylecgonine (BE) and ecgonine methyl ester, and by N-demethylation, to give N-norcocaine (NC). The recent use of [N-methyl-11CH3]cocaine to image brain cocaine binding sites with positron emission tomography (PET) raises the question of whether PET images partially reflect the distribution and kinetics of labeled cocaine metabolites. We prepared [O-metty/-11CH3]cocaine by methylation of the sodium salt of BE with [11C]CH3l, and showed that PET baboon brain scans, as well as regional brain kinetics and plasma time-activity curves corrected for the presence of labeled metabolites, are nearly identical to those seen with [N-methyl-11CH3]cocaine. This strongly suggests that 11C metabolites do not significantly affect PET images, because the metabolite pattern is different for the two labeled forms of cocaine. In particular, nearly half the 11C in blood plasma at 30 min was [11C]CO2 when [N-methy/-11CH3]cocaine was administered, whereas [11C]CO2 was not formed from [O-methy/-11CH3]cocaine. Only a trace of [11C]NC was detected in plasma after [O-methyl-11CH3]cocaine administration. Nearly identical brain PET data were also obtained when 4′-[N-methy/-11CH3]fluorococaine and 4′-[18F]fluoro-cocaine (prepared by nucleophilic aromatic substitution from [18F]fluoride-and 4′-nitrococaine) were compared with [N-methy/-11CH3]cocaine. In vitro assays with rat brain membranes showed that cocaine and 4′-fluoroco-caine were equipotent at the dopamine reuptake site, but that 4′-fluorococaine was about 100 times more potent at the 5-hydroxytryptamine reuptake site. The studies with positron-emitting 4′-fluorococaines thus support the lack of significance of labeled metabolites or of binding to 5-hydroxytryptamine reuptake sites to PET images taken with [N-methy/-11CH3]cocaine. [11C]NC prepared by O-methylation of norbenzoylecgonine gave PET images with preferential uptake in striatum, but slower clearance from all brain regions than [O-methy/-11CH3]cocaine. [11C]BE prepared by N-methylation of norbenzoylecgonine did not show brain uptake.  相似文献   

5.
Vandetanib (ZD6474) and its chlorine analogue chloro-Vandetanib are potent and selective vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors with low nanomolar IC50 values. [11C]Vandetanib and [11C]chloro-Vandetanib, new potential PET agents for imaging of VEGFR in cancer, were first designed, synthesized and labeled at nitrogen and oxygen positions from their corresponding N- and O-des-methylated precursors, in 40-50% decay corrected radiochemical yield and 370-555 GBq/μmol specific activity at end of bombardment (EOB).  相似文献   

6.
Buprenorphine and diprenorphine were radiolabeled with 11C and their distributions in the baboon brain were studied using positron emission tomography (PET). Specific binding was demonstrated in the striatum (but not in the cerebellum) by pretreating the baboon with (−)naloxone. The absolute striatal uptakes and time courses were similar for these two radioligands but the ratio of radioactivity in the striatum to cerebellum in the baboon was higher for [11C]diprenorphine than for [11C]buprenorphine. Analysis of baboon plasma indicated that both [11C]diprenorphine and [11CJbuprenorphine are rapidly metabolized. Analysis of radioactivity in mouse brain indicated that these two radioligands are stable to metabolic transformation. At 30 min after injection, 86–90% of extracted radioactivity was due to unchanged 11C-labeled radioligands. These results suggest that both [11C]diprenorphine and [11C]buprenorphine may be useful radioligands for studying opioid receptors in humans, although [11C]diprenorphine may be a better radioligand than [11C]buprenorphine for this purpose because of its more rapid clearance from the cerebellum.  相似文献   

7.
Radiosynthesis and evaluation of [11C]GSK1838705A in mice using microPET and determination of specificity in human GBM UG87MR cells are described herein. The radioligand was synthesized by reacting desmethyl-GSK1838705A with [11C]CH3I using GE FX2MeI module in ~5% yield (EOS), >95% radiochemical purity and a specific activity of 2.5 ± 0.5 Ci/μmol. MicroPET imaging in mice indicated that [11C]GSK1838705A penetrated blood brain barrier (BBB) and showed retention of radiotracer in brain. The radioligand exhibited high uptake in U87MG cells with >70% specific binding to IGF1R. Our experiments suggest that [11C]GSK-1838705A can be a potential PET radiotracer for the in vivo quantification of IGF1R expression in GBM and other brain tumors.  相似文献   

8.
The applicability of five different rodent tumors for experimental PET has been investigated. l-[1-11C]Tyrosine was a better indicator for the growth activity of the tumors than [18F]FDG. For experimental PET, the three mice models studied appeared inappropriate; the Lewis lung tumor and the fibrosarcomateous FIO 26 had too low a tyrosine utilization, while the lymphosarcomateous LY showed insufficient tumor-to-background ratios. Of the two rat models, the necrotic Walker 256 carcinosarcoma was less suitable. By using l-[1-11C]tyrosine, the solid, rhabdomyosarcoma tumor offers good possibilities of monitoring therapeutic interventions with PET.  相似文献   

9.
Radiosynthesis and in vivo evaluation of [N-methyl-11C] 5-methyl-3-[4-(3-phenylallyl)-piperazin-1-ylmethyl]-3,3a,4,5-tetrahydroisoxazolo[4,3-c]quinoline (1), a potential PET tracer for alpha2-adrenergic receptors is described. Syntheses of nonradioactive standard 1 and corresponding desmethyl precursor 2 were achieved from 2-aminobenzaldehyde in 40% and 65% yields, respectively. Methylation using [11C]CH3I in presence of aqueous potassium hydroxide in DMSO afforded [11C]1 in 25% yield (EOS) with >99% chemical and radiochemical purities with a specific activity ranged from 3–4 Ci/μmol (n = 6). The total synthesis time was 30 min from EOB. PET studies in anesthetized baboon show that [11C]1 penetrates BBB and accumulates in alpha2A-AR enriched brain areas.  相似文献   

10.
[Thiocarbonyl-11C]disulfiram ([11C]DSF) was synthesized via iodine oxidation of [11C]diethylcarbamodithioic acid ([11C]DETC), which was prepared from [11C]carbon disulfide and diethylamine. The decay-corrected isolated radiochemical yield (RCY) of [11C]DSF was greatly affected by the addition of unlabeled carbon disulfide. In the presence of carbon disulfide, the RCY was increased up to 22% with low molar activity (Am, 0.27 GBq/μmol). On the other hand, [11C]DSF was obtained in 0.4% RCY with a high Am value (95 GBq/μmol) in the absence of carbon disulfide. The radiochemical purity of [11C]DSF was always >98%. The first PET study on [11C]DSF was performed in mice. A high uptake of radioactivity was observed in the liver, kidneys, and gallbladder. The uptake level and distribution pattern in mice were not significantly affected by the Am value of the [11C]DSF sample used. In vivo metabolite analysis showed the rapid decomposition of [11C]DSF in mouse plasma.  相似文献   

11.
A general one-pot method has been developed for the conversion of an aryl thiol moiety masked as the butyrate ester to the corresponding 11C-labeled methylsulfone group. The potential of this methodology has been demonstrated by the successful radiosynthesis of carbon-11 analogues of several highly selective cyclooxygenase-2 (COX-2) inhibitors such as Rofecoxib, Etoricoxib, and 3-(4-methylsulfonylphenyl)-4-phenyl-5-trifluoromethyl isoxazole in high yield. The chemical and radiochemical purities obtained for the 11C-labeled COX-2 inhibitors are >99% with a specific activity >1000 Ci/mmol.  相似文献   

12.
New carbon-11 labeled D-luciferin analogs D-luciferin [(11)C]methyl ester ([(11)C]LMEster, [(11)C]1) and D-luciferin [(11)C]methyl ether ([(11)C]LMEther, [(11)C]2) were synthesized in 25-55% radiochemical yield. PET studies with [(11)C]LMEster and [(11)C]LMEther demonstrate a lower retention of the C-11 label at 45 min post-injection in luciferase expression tumor. Optical imaging with unlabeled substrate D-luciferin and radiotracers [(11)C]LMEster and [(11)C]LMEther gave tumor luciferase images within a few minutes of photon counting.  相似文献   

13.
Fully automated synthesis and initial PET evaluation of a TSPO radioligand, [11C]PBR28 (N-(2-[11C]methoxybenzyl)-N-(4-phenoxypyridin-3-yl)acetamide), are reported. These results facilitate the potential preclinical and clinical PET studies of [11C]PBR28 in animals and humans.  相似文献   

14.
AimsAbnormality of cognitive function in schizophrenia has been suggested to be related to dopamine D1 receptor. However, the results of previous positron emission tomography (PET) studies of dopamine D1 receptor in schizophrenia were not consistent.Main methodsIn this study, six patients with schizophrenia in severe residual phase with chronic antipsychotic treatment and twelve healthy age-matched controls participated. Two different radioligands, [11C]NNC112 and [11C]SCH23390, for dopamine D1 receptor were used on the same subjects. Binding of the ligands was measured by PET, and statistical analysis was performed using one-way analysis of covariate (ANCOVA) with age as covariate.Key findingsGood correlations between binding potential values (BPND) and age were observed in all regions of interest (ROIs) with both ligands. ANCOVA with age as covariate of BPND values of all ROIs revealed that the patient group showed significantly lower BPND value compared with the control group in both ligands.SignificanceIn patients with chronic schizophrenia in severe residual phase with chronic antipsychotic treatment, the binding potential values of both ligands were significantly lower in the striatum and cortical regions than those of healthy controls.  相似文献   

15.
EMPA is a selective antagonist of orexin 2 (OX2) receptors. Previous literature with [3H]-EMPA suggest that it may be used as an imaging agent for OX2 receptors; however, brain penetration is known to be modest. To evaluate the potential of EMPA as a PET radiotracer in non-human primate (as a step to imaging in man), we radiolabeled EMPA with carbon-11. Radiosynthesis of [11C]N-ethyl-2-(N-(6-methoxypyridin-3-yl)-2-methylphenylsulfonamido)-N-(pyridin-3-ylmethyl)acetamide ([11C]EMPA), and evaluation as a potential PET tracer for OX2 receptors is described. Synthesis of an appropriate non-radioactive O-desmethyl precursor was achieved from EMPA with sodium iodide and chlorotrimethylsilane. Selective O-methylation using [11C]CH3I in the presence of cesium carbonate in DMSO at room temp afforded [11C]EMPA in 1.5–2.5% yield (non-decay corrected relative to trapped [11C]CH3I at EOS) with ?95% chemical and radiochemical purities. The total synthesis time was 34–36 min from EOB. Studies in rodent suggested that uptake in tissue was dominated by nonspecific binding. However, [11C]EMPA also showed poor uptake in both rats and baboon as measured with PET imaging.  相似文献   

16.

Background

The aim of this study was to test seven previously published image-input methods in state-of-the-art high resolution PET brain images. Images were obtained with a High Resolution Research Tomograph plus a resolution-recovery reconstruction algorithm using two different radioligands with different radiometabolite fractions. Three of the methods required arterial blood samples to scale the image-input, and four were blood-free methods.

Methods

All seven methods were tested on twelve scans with [11C](R)-rolipram, which has a low radiometabolite fraction, and on nineteen scans with [11C]PBR28 (high radiometabolite fraction). Logan V T values for both blood and image inputs were calculated using the metabolite-corrected input functions. The agreement of image-derived Logan V T values with the reference blood-derived Logan V T values was quantified using a scoring system. Using the image input methods that gave the most accurate results with Logan analysis, we also performed kinetic modelling with a two-tissue compartment model.

Results

For both radioligands the highest scores were obtained with two blood-based methods, while the blood-free methods generally performed poorly. All methods gave higher scores with [11C](R)-rolipram, which has a lower metabolite fraction. Compartment modeling gave less reliable results, especially for the estimation of individual rate constants.

Conclusion

Our study shows that: 1) Image input methods that are validated for a specific tracer and a specific machine may not perform equally well in a different setting; 2) despite the use of high resolution PET images, blood samples are still necessary to obtain a reliable image input function; 3) the accuracy of image input may also vary between radioligands depending on the magnitude of the radiometabolite fraction: the higher the metabolite fraction of a given tracer (e.g., [11C]PBR28), the more difficult it is to obtain a reliable image-derived input function; and 4) in association with image inputs, graphical analyses should be preferred over compartmental modelling.  相似文献   

17.
N-Desmethyl-loperamide and loperamide were synthesized from α,α-diphenyl-γ-butyrolactone and 4-(4-chlorophenyl)-4-hydroxypiperidine in five and four steps with 8% and 16% overall yield, respectively. The amide precursor was synthesized from 4-bromo-2,2-diphenylbutyronitrile and 4-(4-chlorophenyl)-4-hydroxypiperidine in 2 steps with 21–57% overall yield. [11C]N-Desmethyl-loperamide and [11C]loperamide were prepared from their corresponding amide precursor and N-desmethyl-loperamide with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with solid-phase extraction (SPE) in 20–30% and 10–15% radiochemical yields, respectively, based on [11C]CO2 and decay corrected to end of bombardment (EOB), with 370–740 GBq/μmol specific activity at EOB.  相似文献   

18.
Synthesis of 11C-labeled radiopharmaceuticals via direct fixation of [11C]carbon dioxide and [11C]carbon monoxide are described.  相似文献   

19.
OMAR analogs reference standards and their corresponding desmethylated precursors were synthesized from substituted anilines either in 4 and 5 steps with 27-32% and 24-31% yield, or in 3 and 4 steps with 21-30% and 19-28% yield, respectively. [(11)C]OMAR and its analog radioligands were prepared from their desmethylated precursors with [(11)C]CH(3)OTf through O-[(11)C]methylation and isolated by HPLC combined with solid-phase extraction (SPE) in 50-65% radiochemical yields based on [(11)C]CO(2) and decay corrected to end of bombardment (EOB), with 370-740 GBq/μmol specific activity at EOB.  相似文献   

20.
Pretargeted nuclear imaging based on the ligation between tetrazines and nano-sized targeting agents functionalized with trans-cyclooctene (TCO) has recently been shown to improve both imaging contrast and dosimetry in nuclear imaging of nanomedicines. Herein, we describe the improved radiosynthesis of a 11C-labeled tetrazine ([11C]AE-1) and its preliminary evaluation in both mice and pigs. Pretargeted imaging in mice was carried out using both a new TCO-functionalized polyglutamic acid and a previously reported TCO-functionalized bisphosphonate system as targeting agents. Unfortunately, pretargeted imaging was not successful using these targeting agents in pair with [11C]AE-1. However, brain imaging in pig indicated that the tracer crossed the blood-brain-barrier. Hence, we suggest that this tetrazine scaffold could be used as a starting point for the development of pretargeted brain imaging, which has so far been a challenging task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号