首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elicitation of cell cultures of Silybum marianum with methyl jasmonate (MeJA) increases the production and release of the secondary metabolite silymarin into the culture medium and this process seems to be dependent on phospholipase D activity and its product phosphatidic acid (PA). However, MeJA did not alter total membrane lipid content or overall fatty acid composition. A progressive increase in some galactolipids was observed with elicitation time. Phospholipids were mainly represented by phosphatidylcholine (PC) followed by phosphatidylethanolamine (PE) and phosphatidylinositol (PI). MeJA caused losses of PC species that contain two unsaturated acyl species, 36:5 and 36:6 and an increase in 36:2 species. A drop in the ratio of compounds with 18:3 in PI and PE was also observed. The presence of the lysophospholipids (LP) LPC (16:0, 18:3, 18:2, 18:1) and LPE (16:0, 18:3, 18:2, 18:1) and the high contents of PA, represented by the molecular species 34:3, 34:2 and 36:5 and 36:4, indicates high basal level of phospholipase activity in cultures and a high phospholipid turnover. MeJA treatment did not quantitatively alter these lipid classes.  相似文献   

2.
In the present study, metabolic engineering approach was used through over-expressing the Petunia chalcone synthase (chsA) gene in order to enhance the silymarin production level in the hairy root cultures of Silybum marianum. Molecular analysis confirmed the presence and integration of chsA transgene in transgenic hairy roots. Chemical analysis indicated that the over-expression of chsA gene enhanced the silymarin production level in the transgenic line as much as 7-folds than the non-transgenic hairy roots. Moreover, the silybin content, the main active component of silymarin, was proved to be 10 times higher in transgenic hairy roots than those of the non-transgenic ones. Therefore, the over-expression of petunia chsA gene in S. marianum hairy roots did not result in gene silencing, but led to an enhanced biosynthesis of the flavonolignans.  相似文献   

3.
Protein tyrosine phosphatase 1B (PTP1B) is an attractive molecular target for anti-diabetes, anti-obesity, and anti-cancer drug development. From the seeds of Silybum marianum, nine flavonolignans, namely, silybins A, B (1, 2), isosilybins A, B (3, 4), silychristins A, B (5, 6), isosilychristin A (7), dehydrosilychristin A (8), and silydianin (11) were identified as a novel class of natural PTP1B inhibitors (IC50 1.3 7–23.87?µM). Analysis of structure–activity relationship suggested that the absolute configurations at C-7" and C-8" greatly affected the PTP1B inhibitory activity. Compounds 15 were demonstrated to be non-competitive inhibitors of PTP1B based on kinetic analyses. Molecular docking simulations resulted that 15 docked into the allosteric site, including α3, α6, and α7 helix of PTP1B. At a concentration inhibiting PTP1B completely, compounds 15 moderately inhibited VHR and SHP-2, and weakly inhibited TCPTP and SHP-1. These results suggested the potentiality of these PTP1B inhibitors as lead compounds for further drug developments.  相似文献   

4.
In this study, a protocol for initiation of callus and shoot cultures from leaves and shoot tips explants of different silybium genotypes collected from different locations in Egypt was established. Callus cultures were initiated from leaves explants and exposed to different concentrations of the precursor (coniferyl alcohol). Shoot cultures were initiated from shoot tips explants. Moreover, the produced plants of the different Silybium shoots as well as intact plants were subjected to protein screening using SDS–PAGE analysis.Results obtained revealed that the optimum medium for growth and maintenance of friable callus was MS medium supplemented with 0.25 mg L−1 2,4-Dichlorophenoxy acetic acid (2,4-D) + 0.25 mg L−1 Kinetin (Kin). The best medium for proliferation of high number of shoots was MS-medium with 0.25 mg L−1 each of Benzyl Adinine (BA) and Naphthalene Acetic Acid (NAA). Coniferyl alcohol in concentration of 30 μM caused an increase in accumulation of silymarin contents in most callus cultures. SDS–PAGE of different Silybium shoots revealed that the protein profiles of 100% of in vitro produced plantlets similar to their control.  相似文献   

5.
Anti-melanogenesis effects of silymarin from milk thistle have been reported recently, but detailed tyrosinase inhibition properties of individual components have not been investigated. This study purported to substantiate tyrosinase inhibition and its mechanism based on a single metabolite. The responsible components for tyrosinase inhibition of target source were found out as flavonolignans which consist of isosilybin A (1), isosilybin B (2), silydianin (3), 2,3-dihydrosilychristin (4), silychristin A (5), silychristin B (6) and silybin (7), respectively. The isolated flavonolignans (17) inhibited both monophenolase (IC50 = 1.7–7.6 µM) and diphenolase (IC50 = 12.1–44.9 µM) of tyrosinase significantly. Their inhibitions were 10-fold effective in comparison with their mother skeletons (810). Inhibitory functions were also proved by HPLC analysis using N-acetyl-l-tyrosine as substrate. The predominant formation of Emet·I was confirmed from a long prolongation of lag time and a decrease of the static state activity of the enzyme. All tested compounds had a significant binding affinity to tyrosinase with KSV values of 0.06–0.27 × 104 L·mol−1, which are well correlated with IC50s. In kinetic study, all flavonolignan (17) were mixed type I (KI < KIS) inhibitors, whereas their mother skeletons (810) were competitive ones. The UPLC-ESI-TOF/MS analysis showed that the isolated inhibitors are the most abundant metabolites in the target plant.  相似文献   

6.
Elimination of calcium ions from the medium of cell cultures of Silybum marianum (L.) Gaertn increased flavonolignan production. Silymarin accumulation was not altered by treatment of cultures with the calcium ionophore A23187. The specific Ca2+ chelator, EGTA, enhanced the silymarin content in cells by 200%, and its secretion by 3-4 times. The inorganic ion La3+, as well as the calcium channel inhibitor verapamil, also stimulated production. Several reagents known to block intracellular calcium movement, such as ruthenium red, thapsigargin and TMB-8 appreciably increased silymarin accumulation. These results suggest that inhibition of external and internal calcium fluxes plays a significant role in flavonolignan metabolism of S. marianum cell cultures.  相似文献   

7.
Increasing starch production is a central issue in plant biology and applied biotechnology. Although genetic engineering has been applied to produce plants containing much starch, chemicals that promote starch accumulation have not been well studied. Here, we report that exogenously applied methyl jasmonate (MeJA) enhanced the leaf starch content of Arabidopsis thaliana. A significant increase in starch production was detected during the light period after Arabidopsis was treated with high doses of MeJA (100–1,000 μM). The MeJA application influenced starch production rather than starch degradation because the expression of starch biosynthetic genes was upregulated by MeJA. The promotion of starch accumulation by MeJA was demonstrated not only in Arabidopsis but also in tobacco and spinach. These results suggest that the promotion of starch accumulation by MeJA is a common response found in a variety of plants.  相似文献   

8.
值得开发与利用的水飞蓟油   总被引:1,自引:0,他引:1  
对我国水飞蓟种子的不同地区,含油率、理化常数、脂肪酸组成,氨基酸组成和矿质元素等进行总结性论述,并指出油的开发利用前途.  相似文献   

9.
Exogenously applied methyl jasmonate (MeJA) stimulated soyasaponin biosynthesis in cultured cells of Glycyrrhiza glabra (common licorice). mRNA level and enzyme activity of beta-amyrin synthase (bAS), an oxidosqualene cyclase (OSC) situated at the branching point for oleanane-type triterpene saponin biosynthesis, were up-regulated by MeJA, whereas those of cycloartenol synthase, an OSC involved in sterol biosynthesis, were relatively constant. Two mRNAs of squalene synthase (SQS), an enzyme common to both triterpene and sterol biosyntheses, were also up-regulated by MeJA. In addition, enzyme activity of UDP-glucuronic acid: soyasapogenol B glucuronosyltransferase, an enzyme situated at a later step of soyasaponin biosynthesis, was also up-regulated by MeJA. Accumulations of bAS and two SQS mRNAs were not transient but lasted for 7 d after exposure to MeJA, resulting in the high-level accumulation (more than 2% of dry weight cells) of soyasaponins in cultured licorice cells. In contrast, bAS and SQS mRNAs were coordinately down-regulated by yeast extract, and mRNA accumulation of polyketide reductase, an enzyme involved in 5-deoxyflavonoid biosynthesis in cultured licorice cells, was induced transiently by yeast extract and MeJA, respectively.  相似文献   

10.
It has been recognized that ginsenoside Rg3 is not naturally produced in ginseng although this ginsenoside can accumulate in red ginseng as the result of a thermal process. In order to determine whether or not Rg3 is synthesized in ginseng, hairy roots were treated with methyl jasmonate (MJ). From HPLC analysis, no peak for Rg3 was observed in the controls. However, Rg3 did accumulate in hairy roots that were MJ-treated for 7?days. Rg3 content was 0.42?mg/g (dry weight). To gain more insight into the effects of MJ on UDP-glucosyltransferase (UGT) activity, we attempted to evaluate ginsenoside Rg3 biosynthesis by UGT. A new peak for putative Rg3 was observed, which was confirmed by LC-MS/MS analysis. Our findings indicate that the proteins extracted from our hairy root lines can catalyze Rg3 from Rh2. This suggests that our ginseng hairy root lines possess Rg3 biosynthesis capacity.  相似文献   

11.
The biosynthesis of the flavonolignan silymarin, a constitutive compound of the fruits of Silybum marianum with strong antihepatotoxic and hepatoprotective activities, is severely reduced in cell cultures of this species. It is well known that elicitation is one of the strategies employed to increase accumulation of secondary metabolites. Our study here reports on the effect of several compounds on the production of silymarin in S. marianum cultures. Yeast extract (YE), chitin and chitosan were compared with respect to their effects on silymarin accumulation in S. marianum suspensions and only yeast extract stimulated production. Jasmonic acid (JA) potentiated the yeast extract effect. One of the jasmonic acid derivatives, methyl jasmonate (MeJA), strongly promoted the accumulation of silymarin. Methyl jasmonate acted in a number of steps of the metabolic pathway of flavonolignans and its stimulating effect was totally dependent of "de novo" protein synthesis. Chalcone synthase (CHS) activity was enhanced by methyl jasmonate; however there did not appear to be a temporal relationship between silymarin accumulation and increase in enzyme activity. Also, this increase was not blocked by the protein synthesis inhibitor cycloheximide (CH). This study indicates that elicitor treatment promotes secondary metabolite production in S. marianum cultures and that jasmonic acid and its functional analogue plays a critical role in elicitation.  相似文献   

12.
Callus from Helianthus tuberosus expresses a mannose-specific lectin (HTA). The level of HTA mRNA significantly increased one hour after treatment of the callus with 20 mg/l methyl jasmonate. Following this, fragmentation of the callus DNA at regular intervals was observed together with strong self-fluorescence emission in the callus cells.  相似文献   

13.
A variety of pharmacological effectors of signal transduction pathways were used to investigate the elicitor-activated sequence of cellular responses by which yeast extract (YE) or methyljasmonate (MeJA) enhanced production of silymarin in cell cultures of Silybum marianum. As we recently showed that inhibition of external and internal calcium fluxes significantly increased flavonolignan production in S. marianum cultures, we examined whether calcium mediates signaling events leading to enhancement of silymarin production upon YE or MeJA elicitation. Pre-treatment of cultures with calcium chelators, calcium blockers or intracellular antagonists enhanced the elicitor effect of YE or MeJA. The increase of intracellular-free Ca(2+) level also promoted the elicitor effect, suggesting that an external source of calcium or alterations in internal calcium fluxes were not required for the elicitation to occur. Activation of phosphorylation/dephosphorylation cascades did not appear to mediate the elicitation mechanism; the increase in silymarin induced by elicitation was not suppressed by inhibitors of protein phosphatases or by protein kinase inhibitors. No H(2)O(2) generation was detected at any time after elicitation. Also, diphenyleneiodonium, a potent inhibitor of NAD(P)H-oxidase, did not block silymarin production in elicited cultures. From these results, we conclude that S. marianum cell cultures do not appear to employ conserved signaling components in the transduction of the elicitor signal to downstream responses such as silymarin production.  相似文献   

14.
15.
Gynura bicolor DC., a traditional vegetable in Japan, is cultivated as Kinjisou and Suizenjina in Ishikawa and Kumamoto prefectures, respectively. The adaxial side of the leaves of G. bicolor grown in a field is green, and the abaxial side is reddish purple. It has been reported that these reddish purple pigments are anthocyanins. Although we established a culture system of G. bicolor, the leaves of G. bicolor plants grown under our culture conditions showed green color on both sides of all leaves. We investigated the effects of phytohormones and chemical treatments on anthocyanin accumulation in cultured plants. Although anthocyanin accumulation in the leaves was slightly stimulated, anthocyanins accumulation in the roots of the cultured plant was induced remarkably by 25–50 μM methyl jasmonate (MJ) treatment. This induction was affected by light irradiation and sucrose concentration in the culture medium. However, salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid did not induce anthocyanin accumulation in roots. And then, combinations of MJ and SA or MJ and AgNO3 did not stimulate the anthocyanin accumulation in the root as found in the case of treatment by MJ solely.  相似文献   

16.
Treatment of Silybum marianum cell cultures with methyl jasmonate elicits the production of the antihepatotoxic drug silymarin and its release into the culture medium. In this work, we investigated the involvement of peroxidases (EC 1.11.1.7; donor hydrogen peroxidase oxido-reductase) in silymarin turnover in cell cultures as well as the influence of elicitation on the activity towards several substrates. Peroxidases from cell extracts and, to a higher degree from the spent medium, used the silymarin precursors taxifolin and coniferyl alcohol as substrates. Silymarin compounds were also degraded by suspension culture peroxidases; however, the oxidation efficiency was not modified by elicitation. S. marianum peroxidases were able to catalyse the oxidative coupling of taxifolin and coniferyl alcohol to silybinins. The synthetic activity was mainly associated with the extracellular compartment and as before, methyl jasmonate did not modify oxidative coupling activity. Changes in the isoenzyme profiles were not observed in elicited cultures.  相似文献   

17.
Adventitious roots of ginseng were treated with methyl jasmonate (MJ) up to 150 microM and cultured for 40 days. Up to 100 microM MJ inhibited the root growth but increase ginsenoside accumulation. In a two-stage bioreactor culture, total ginsenosides, after elicitation with 100 microM MJ peaked after 10 days at 48 mg g(-1) dry wt and then dropped sharply. Of the two groups of ginsenosides (Rb and Rg), higher amounts of Rb accumulated in the adventitious roots.  相似文献   

18.
Yang D  Ma P  Liang X  Wei Z  Liang Z  Liu Y  Liu F 《Physiologia plantarum》2012,146(2):173-183
Tanshinones, a group of active ingredients in Salvia miltiorrhiza, are derived from at least two biosynthetic pathways, which are the mevalonate (MVA) pathway in the cytosol and the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the plastids. Abscisic acid (ABA) and methyl jasmonate (MJ) are two well-known plant hormones induced by water stress. In this study, effects of polyethylene glycol (PEG), ABA and MJ on tanshinone production in S. miltiorrhiza hairy roots were investigated, and the role of MJ in PEG- and ABA-induced tanshinone production was further elucidated. The results showed that tanshinone production was significantly enhanced by treatments with PEG, ABA and MJ. The mRNA levels of 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS), as well as the enzyme activities of HMGR and DXS were stimulated by all three treatments. PEG and ABA triggered MJ accumulation. Effects of PEG and ABA on tanshinone production were completely abolished by the ABA biosynthesis inhibitor [tungstate (TUN)] and the MJ biosynthesis inhibitor [ibuprofen (IBU)], while effects of MJ were almost unaffected by TUN. In addition, MJ-induced tanshinone production was completely abolished by the MEP pathway inhibitor [fosmidomycin (FOS)], but was just partially arrested by the MVA pathway inhibitor [mevinolin (MEV)]. In conclusion, a signal transduction model was proposed that exogenous applications of PEG and ABA triggered endogenous MJ accumulation by activating ABA signaling pathway to stimulate tanshinone production, while exogenous MJ could directly induce tanshinone production mainly via the MEP pathway in S. miltiorrhiza hairy roots.  相似文献   

19.
A comprehensive metabolomic profiling of Silybum marianum (L.) Gaernt cell cultures elicited with yeast extract or methyl jasmonate for the production of silymarin was carried out using one- and two-dimensional nuclear magnetic resonance spectroscopy. With these techniques we were able to detect both temporal quantitative variations in the metabolite pool in yeast extract-elicited cultures and qualitative differences in cultures treated with the two types of elicitors. Yeast extract and methyl jasmonate caused a metabolic reprogramming that affected amino acid and carbohydrate metabolism; upon elicitation sucrose decreased and glucose levels increased, these changes being dependent on "de novo" protein synthesis. Also dependent on protein synthesis were the increase seen in alanine and glutamine in elicited cultures. Yeast extract differentially acted on threonine and valine metabolism and promoted accumulation of choline and alpha-linolenic acid in cells thus suggesting its action on membranes and the involvement of the octadecanoid pathway in the induction of silymarin in S. marianum cultures. Phenylpropanoid metabolism was altered by elicitation but, depending on elicitor, different phenylpropanoid profile was produced. The results obtained in this study will permit in the future to identify candidate components of the signalling pathway involved in the stimulation of the constitutive pathway of silymarin.  相似文献   

20.
Adventitious roots of ginseng were treated with methyl jasmonate (MJ) up to 150m and cultured for 40days. Up to 100m MJ inhibited the root growth but increase ginsenoside accumulation. In a two-stage bioreactor culture, total ginsenosides, after elicitation with 100 m MJ peaked after 10days at 48mgg–1 dry wt and then dropped sharply. Of the two groups of ginsenosides (Rb and Rg), higher amounts of Rb accumulated in the adventitious roots.Revisions requested; 2 July 2004; Revisions received 30 June 2004; 3 September 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号